來當一日語音設計師——如何設計好聽的合成語音?

626次阅读
没有评论

  • 文/邱彥哲|雅文基金會聽語科學研究中心 助理研究員

「Hey, Siri!」「OK, Google!」你曾經對手上的行動裝置說話嗎?你會要求他回答什麼呢?受限於目前的技術,你可能不會得到非常滿意的答案,但至少你會聽到一陣悅耳如同真人的語音吧!這項現今習以為常的技術,其實背後是由很多知識累積而成的。今天,讓我邀請你擔任一日「語音設計師」,從語音合成的技術開始,接著了解人類使用者的聽覺偏好,最後探索不同族群對聆聽合成語音的差異吧!

來當一日語音設計師——如何設計好聽的合成語音?語音助理進駐現代人的日常生活。圖/freepik

語音合成(speech synthesis),是指以人工方式,製造出說話的聲音,可以理解為使機器裝置說出人話的技術。廣義來說,很多人也會把文字轉語音(Text to Speech,簡稱 TTS),含括在語音合成的範疇。

語音合成像樂高,但樂高有兩種

早在 1970 年代,人類就已經開始嘗試讓機器說話了。構思如何讓機器說話這件事,最直接的方式就是請真人錄一段聲音,然後在指定的時機播放。不過,面對複雜的語言情境,我們不可能錄下所有可能的回應 ; 而且若要這樣做,也實在太沒效率。幸好,借助電腦運算技術,可以讓人類向自動生成語音邁進一大步。合成的方法可以分成兩大類,分別是單元選取合成(Unit Selection Synthesis)及參數合成(Parametric Synthesis)[1]

單元選取合成這種方法,是將某個語言的語音成分分別以人聲錄製起來,再根據需要的目標語音進行組合。簡單來說,如果需要機器說發出「八」的語音,就必須單獨錄製「ㄅ」跟「ㄚ」。這個技術聽起來直觀方便,但也有缺點。就是事先必須建立一個龐大的語音資料庫,這個資料庫必須包含一個語言所有語音成分,此外,還必須錄下這些語音成分在所有情境下的變化,光想起來就令人有點頭痛。

所以後者,參數合成,就顯得方便許多。這種方法,是直接將語音參數輸入電腦,讓電腦直接根據參數發出聲音,再組成語音。使用參數合成,就可以免去請人錄音的步驟,但直接使用電腦生成的語音,聽起來也會相對不自然。我們可以把這兩類方法想像成是在組合樂高,都是將語音成分一塊一塊組合起來,只是前者的樂高是自然材質(比如說木頭製),後者是人造材質(比如說塑膠)。

借助深度學習,電腦說話很自動

不過,無論是上述哪種方法,都還是需要不少的人工調校,才能使聲音逐步接近人類的語音。但還好,隨著電腦演算的進步,將深度學習(deep learning)運用在語音合成的領域,不但減少了人工成本,也大大提升的語音的擬人性。所謂深度學習,簡單來說就是一套模擬人類神經網絡的演算法。

使用這樣的演算法,設計者只需蒐集大量的語音資料,將資料「餵」給電腦,無須事先切分或分析,電腦便會自動學習其中的規律。如此一來,只要資料數量足夠龐大,電腦就可以自動產生符合自然規律且真實的語音。

但是,身為一位語音設計師,要進一步思考的是:「究竟要餵給電腦什麼呢?」這個問題又必須從使用者的角度來思考:「人類會偏好聆聽什麼樣的語音?」就像生產商品一樣,語音百百款,要能投其所好,才能讓使用者日日寸步不離,對吧!

聆聽也要投其所好,性別頻率最重要

來當一日語音設計師——如何設計好聽的合成語音?人類對不同性別及頻率有特殊的聆聽偏好。圖/freepik

關於合成語音的聆聽偏好,最先被討論的,是性別。雖然我們都知道機器沒有性別,但若希望他和人一樣跟你互動,投射性別是很自然的。不過有人就提出質疑:「為什麼我們的語音助理,都是女性的聲音呢?」美國西北大學梅迪爾傳播新聞整合行銷學院教授 Candy Lee 進行一項調查,測試了 8 種族裔的使用者,結果發現 64% 的人只偏好女性的聲音[2]

這樣看起來,預設為女性的聲音應該是沒問題的吧?不過,有人認為這是社會對「助理」的性別刻板印象所致;因為社會習慣女性作為「服務者」,所以在設計語音時,直覺地就挑選了女性聲音。雖然單就頻率方面,的確有研究指出,使用者確實是偏好頻率較高的合成語音[3],但若是一昧如此,也極有可能不斷複製性別偏見的印象[4]

有鑒於此,越來越多系統開始提供男性語音的選項。更甚者,哥本哈根研究團隊突發奇想,不以性別為選項,而是改以頻率作為調查標準。分析之後,他們得到一個最佳的頻率值──185 赫茲,設計出史上第一個無性別語音助理「Q」[5]。如此一來,青菜蘿蔔各有所好,聆聽的偏好也朝著多元共好的目標邁進!

聽得舒服,語速考量不能少

解決的性別與頻率的問題,還得注意甚麼呢?專門研究輔助溝通系統(Augmentative and Alternative Communication,簡稱 AAC)的專家想到了語速的問題。輔助溝通系統可以簡單理解成「溝通輔具」,是用以輔助溝通障礙者溝通的工具; 簡單如圖卡,複雜如電子溝通板,都算是其中一員。而像是電子溝通板這類,以螢幕顯示圖片,點擊後可以播放語音的輔具來說,合成語音是很關鍵的技術。

這些溝通障礙專家想知道:「究竟什麼樣的語音速度,是最舒服的呢?」。

Sutton 與其研究團隊招募了 21 至 28 歲的年輕人與 61 至 79 歲的年長者,對合成語音進行語速評分[6]。語速的計算方式,採用每分鐘幾個字(Words per minute,簡稱 WPM)計算。他們將合成語音調整成不同的語速,範圍介於 120 到 250WPM 之間。結果發現,無論年輕人或年長者,偏好的語速都落在 150 到 200WPM 之間 ; 而年長者則是相對年輕人偏好較慢的語速。這樣的範圍,其實與過去研究提出的人類平均語速,相去不遠[7]

如果想知道不同語速聽起來感受如何,可以到合成語音軟體 Speechify[8]的網站試用,自行調整語速(以 WPM 計算),細細品味其中差異。或者,讓我為你朗讀,請聽示範(語速約 180WPM,內容為「我是彥哲,我是普通人。」)! 

可見,語音合成的技術雖是極為理性的領域,但若要設計出美妙的語音,對人類感性的理解,也絕對不能偏廢。

來當一日語音設計師——如何設計好聽的合成語音?圖/Pixabay

合成語音聆聽不易,考量族群差異最貼心

「所以,我只要想辦法把語音設計得很像人類就可以了吧?」你可能會這樣想,不過這裡頭還少了一個部分。現代社會提倡多元,客製化當道,每個人使用同個產品的狀況必然會有差異。

其實,即使是一般人,聆聽並理解合成語音是比自然語音更加困難的。Winters 及 Pisoni 發表的回顧研究指出:由於合成語音的清晰度普遍較差,因此聆聽者通常需要動用更多的認知資源(像是電腦需要動用較多記憶體),以及更多高層次的語言知識來彌補語音訊息的不完整[9]。如果對普通人來說是如此,對於某些特殊族群來說,想必有更加需要注意的地方。

比如說兒童。Mirenda 及 Beukelman 招募了成年人、10 至 12 歲以及 6 至 8 歲的兒童進行研究[10]。參與者的任務,是要在聽完自然語音及合成語音播放的八個詞彙之後,再將這八個詞彙回憶並說出來,回答無須按照順序。結果研究者發現,兩組兒童無論聆聽自然或合成語音,回憶詞彙的表現都比成人還差 ; 對於兩組兒童而言,記憶合成語音的表現又更不理想。

由此可知,兒童本身的記憶能力就較成年人弱,在聆聽合成語音時,可以說是是難上加難。

另一個被探討的,是聽障族群。聽障族群最主要的困難,就在於聆聽。聆聽合成語音如果對聽常族群來說本來就比較困難,那對聽障族群應該是更加艱困的挑戰吧!Kangas 和 Allen 的研究[11]回答了這個問題。研究者請年長聽障者聆聽自然語音與合成語音,並請他們在聆聽後寫出聽到的單字。結果可想而知,聽障者確實在聆聽合成語音的部分表現得比較差。

看完上面的狀況,身為語音設計師的你,在設計語音的時候,是不是也應該從使用者的背景差異去調整你的語音呢?也許是調整語音的頻率,也許是調整語速,也可能,也可能有更多領域需要探索。唯有這樣,才能朝充滿人性又個人化的智慧語音邁進。

怎麼樣?沒想到要設計語音,希望機器說出一句話,背後涉及理性的技術與感性的考量,非常不容易吧!看完之後,你還是可以輕鬆地要求你的行動裝置說個笑話,唱首歌給你聽,自娛娛人;但也千萬別忘記,多留點心思,給這人類文明的結晶致上敬意。一日語音設計師,功成身退!

參考資料

  1. 詹姆士・弗拉霍斯。(2019)。從說話機器人到聊天機器人。聲控未來:引爆購物、搜尋、導航、語音助理的下一波兆元商機(孔令新譯,頁104-137)。商周出版。
  2. Marc Jacob.(2022/3/30). Medill Study Finds Preference for Female Voices and Local Accents. Northwestern Medill Local News Initiative.
  3. 顏宏旭,楊麗平,宋慧宏。(2020)。聽眾對語音合成導覽裝置聲音偏好之探討。戶外遊憩研究。33(4),83-107。
  4. West, M., Rebecca K., & Chew H.E. (2019). I’d Blush if I Could: Closing Gender Divides in Digital Skills Through Education.UNESCO & EQUALS Skills Coalition.
  5. GenderLess Voice. (2023/3/3) Meet Q [Web message].
  6. Sutton, B., King, J., Hux, K., & Beukelman, D. (1995). Younger and older adults’ rate performance when listening to synthetic speech. Augmentative and Alternative Communication, 11(3), 147-153.
  7. Walker, V. G. (1988). Durational Characteristics of Young Adults during Speaking and Reading Tasks. Folia Phoniatrica et Logopaedica, 40(1), 12–20.
  8. Speechify. (2023/3/3) Speechify.
  9. Winters, S. J., & Pisoni, D. B. (2004). Perception and comprehension of synthetic speech. Research on spoken language processing report, 26, 95-138.
  10. Mirenda, P. & Beukelman, D.R. (1987). A comparison of speech synthesis intelligibility with listeners from three age groups. Augmentative and Alternative Communication, 3, 120-128.
  11. Kangas, K.A. & Allen, G.D. (1990). Intelligibility of synthetic speech for normal-hearing and hearing impaired listeners. Journal of Speech and Hearing Disorders, 55, 751-755.

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 
评论(没有评论)
Generated by Feedzy