GPT启示篇-内容生产的变革与思考

1,518次阅读
没有评论

GPT改变了人类知识的创造、继承及应用,因此对于内容社区产品来说,GPT的出现会给它带来什么变化?本文作者对此进行了分析,希望对你有帮助。

GPT启示篇-内容生产的变革与思考

之前总结过:GPT改变了人类知识的创造、继承及应用的模式,因此,主要的变革会体现在以上三个方面,而前置文章主要讨论的学校教育变革,就是从知识继承的角度出发。

那么,切换下维度,现在从知识创建的范畴入手,并以内容生产为基础场景,提出新设想与落地场景应用。

同样,本文还是从技术乐观主义者出发,讲述GPT对内容生产的变革影响,思考框架如下:

GPT启示篇-内容生产的变革与思考

一、内容生产的变革概述

GPT+插件的应用个人认为是技术与业务场景高度结合的产品形态,通俗来讲,就是可以通过配置具体场景提示语,结合GPT的大语言模型能力,完成各种结果的输出。如:微软copilot就是一个很好的例子。

那么,在内容生产方面,我们能有什么比较好的场景应用呢?

认为主要会体现在以下两个方面:专业内容生产、用户内容生产。

1. 专业内容生产变革

专业内容,特指各类研究、技术发展、社会发展、投资理财等层次较高的知识领域,在这领域包含了企业研究所、高校、政府单位、证券所等机构。

未来的专业内容变革体现在:以AI为主,可由人辅助完成。

根据一份文献[1]表明GPT会重点在以下领域突破:工业设计、药物研发、材料科学、数据合成。

1)工业设计

传统的工业设计一般需要经过以下流程:提出设想->创建原型->补充细节->对原型测试及修正->产品投入量产,这条链路下来不可避免会形成大量的投入成本,并且会产生大量测试产品报废的浪费问题。

假设GPT可以参与到专业内容的创造流程里面,那么从最理想状态进行评估,工业流程设计的流程可简化为:提出设想及优化调整提示方向->产品验证及评估->产品投入量产这三个部分。

这其中最为经典的例子就是芯片设计,设计师需对晶片排布进行各种尝试,有时会多达数十亿种,这不可能从纯人力层面进行设计,故GPT的应用从成本及效率上就可以尽可能的尝试,这确实是一个值得关注的重点领域,并且现实也有相关企业已经在尝试,如英伟达。

拓展阅读: Khailany B.,“Accelerating Chip Design with Machine Learning”,Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD,2020, pp.33-33.

2)药物研发

药物研发领域需要耗费大量的资金及时间,其中一个重点原因在于:药物研发人员需要从海量备选的化合物寻找可供入药的成分,其中化合物的结构本身并不为人知,现阶段单纯以试错的方式推进验证。

后续若引入GPT的生成能力,理想状态来看,可以迅速识别到各种化学物的结构及成分,并且可以对现有的化学物进行重构及修改,从而加速药物研发的速度。其中一个有名的现实例子就是:DeepMind的AlphaFold对蛋白质结构的预测,有兴趣的同学可以自行查阅及阅读。

阅读拓展:Callaway E,“The Entire Protein Universe’: AI Predicts Shape of Nearly Every Known Protein”,Nature,2022,608(7921),pp.15-16

3)材料科学

材料科学和药物研发同理,设计过程中存在反复试错及验证的过程,引入GPT的效率提升也是存在明显的优势,如德国马普所钢铁研究所就与多个研究团队合作,提出了一种新的基于机器学习的高熵合金设计方法。

阅读拓展:Rao Z., et al.“Machine Learning–enabled High-Entropy Alloy Discovery”,Science,2022,378(6615),pp.78-85.

4)数据合成

另,还存在一个领域数据合成,这可能单独作为一个通用领域来理解更为合适,因各行业存在需要高度匹配行业特征的数据诉求,而AI发展离不开数据,GPT单独为每个行业提供高度适配行业特征的数据样本,从而加速行业发展,这也是很有研究价值的领域。

2. 用户内容生产变革

用户内容,特指旅游推荐、营销推荐、视频文字创作、生活常识等用户层面的生活领域,在这领域包含了人人都是产品经理、小红书、知乎、bilibili等公共媒体及视频平台。

未来的用户内容变革体现在:以人为主,可由AI辅助完成。

用户内容知识体系较为发散,可能涉猎范围很多,并且主观层面上又因人而异,故若特定领域进行讨论,可能不太容易开展。因此,个人认为从用户内容创造的几个关键节点出发更为合适。

1)内容审核

一般比较正规的公共媒体平台,都会有内容审核的环节,包含政治敏感话题、黄毒赌非法内容、种族歧视等,现阶段已经引入AI辅助的功能,即标签、识别模型等AI能力来支撑审核人员的工作,但目前其最终内容的决策还是需要人力介入,比较耗费人力成本。

后续引入GPT,由AI替人类完成了决策化的任务,则能从根本上提升审核人员的效率及准度。

GPT启示篇-内容生产的变革与思考

GPT场景应用示例-视频审核

以上的设想原型基于GPT介入视频审核节点,实时生成并标识视频标签(该标签由GPT自动对视频内容总结归纳出的标签,非视频播放提取出来的标签),方便审核员定位视频片段,并呈现AI审核的结果,其中该结果可以从更加通用及人性的维度进行审核并决策。与现有的视频审核(人工规则+场景化设计)相比更为精准,这其实也是进一步解放生产力的应用。

2)数据及内容提供

GPT接入会大大缩短创造内容的时间,主要体现在数据或者素材的提供方面,现有内容创作其中最占据用户创作的时间的就是寻找报告、制表、检索材料等方面,有了GPT+联网的能力,自然可以大幅减少这部分的时间,其实在现有市面产品中,已有相关平台在投入运行了。

GPT启示篇-内容生产的变革与思考

即时AI应用-素材创作(来自即时设计官网)

但个人应用起来功能层面还可以再提升,包含更加精准的识别用户诉求及效果。

3)分析及创作方法

因创作者水平不一,很多时候用户内容创作存在一定的误导性及不准确性,这方面不能说是用户层面的问题,而是整个用户内容行业急需解决的问题,不能因噎废食。

设想若接入GPT的能力,我们可以借助其系统化、专业化的指导意见,来丰富我们创作理念,从而输出更为优质的用户内容,这无疑是AIGC的一个有价值的点:让创作者更加回归创作目的及思考过程,从而输出更为有深度有质量的内容,而这里面用户需要做的就是prompt,即更为具体的反馈提示给到GPT。

二、后记及总结

总结:本文从GPT重构了知识创作的维度,基于五大思想派别之一的技术乐观主义者出发,结合内容生产的两大领域:专业内容生产及用户内容生产,并指出主要变革体现在:

  • 未来的专业内容变革体现在:以AI为主,可由人辅助完成
  • 未来的用户内容变革体现在:以人为主,可由AI辅助完成

并借此展望及讨论了一部分场景的应用可行性。

另,值得一提的是,关于内容创作的讨论,并未包含艺术创作这方面,理由主要是:

艺术创作,包含文学、美术、音乐等方面的内容创作,个人认为可以划分为专业内容范畴,同时又包含在用户内容范畴,这其中还衍生出AI是否具备像人一样对艺术进行理解的能力。

这方面的延展就包含了未来通用AI是否具备主观意识的大命题,因此认为不适合在内容生成的范畴这一小命题中讨论。

感谢阅读,如有不足及偏差,也请帮忙指正,谢谢!

参考文献

[1]陈永伟.超越ChatGPT:生成式AI的机遇、风险与挑战. 山东大学学报(哲学社会科学版)

拓展阅读

GPT启示篇-学校教育的变革与思考

本文由 @SiegZhong 原创发布于人人都是产品经理,未经许可,禁止转载

题图来自 Unsplash,基于 CC0 协议

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 0
评论(没有评论)

文心AIGC

2023 年 4 月
 12
3456789
10111213141516
17181920212223
24252627282930
文心AIGC
文心AIGC
人工智能ChatGPT,AIGC指利用人工智能技术来生成内容,其中包括文字、语音、代码、图像、视频、机器人动作等等。被认为是继PGC、UGC之后的新型内容创作方式。AIGC作为元宇宙的新方向,近几年迭代速度呈现指数级爆发,谷歌、Meta、百度等平台型巨头持续布局
文章搜索
热门文章
潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026 Jay 2025-12-22 09...
“昆山杯”第二十七届清华大学创业大赛决赛举行

“昆山杯”第二十七届清华大学创业大赛决赛举行

“昆山杯”第二十七届清华大学创业大赛决赛举行 一水 2025-12-22 17:04:24 来源:量子位 本届...
MiniMax海螺视频团队首次开源:Tokenizer也具备明确的Scaling Law

MiniMax海螺视频团队首次开源:Tokenizer也具备明确的Scaling Law

MiniMax海螺视频团队首次开源:Tokenizer也具备明确的Scaling Law 一水 2025-12...
天下苦SaaS已久,企业级AI得靠「结果」说话

天下苦SaaS已久,企业级AI得靠「结果」说话

天下苦SaaS已久,企业级AI得靠「结果」说话 Jay 2025-12-22 13:46:04 来源:量子位 ...
最新评论
ufabet ufabet มีเกมให้เลือกเล่นมากมาย: เกมเดิมพันหลากหลาย ครบทุกค่ายดัง
tornado crypto mixer tornado crypto mixer Discover the power of privacy with TornadoCash! Learn how this decentralized mixer ensures your transactions remain confidential.
ดูบอลสด ดูบอลสด Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
Obrazy Sztuka Nowoczesna Obrazy Sztuka Nowoczesna Thank you for this wonderful contribution to the topic. Your ability to explain complex ideas simply is admirable.
ufabet ufabet Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
ufabet ufabet You’re so awesome! I don’t believe I have read a single thing like that before. So great to find someone with some original thoughts on this topic. Really.. thank you for starting this up. This website is something that is needed on the internet, someone with a little originality!
ufabet ufabet Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
热评文章
摩尔线程的野心,不藏了

摩尔线程的野心,不藏了

摩尔线程的野心,不藏了 量子位的朋友们 2025-12-22 10:11:58 来源:量子位 上市后的仅15天...
摩尔线程的野心,不藏了

摩尔线程的野心,不藏了

摩尔线程的野心,不藏了 量子位的朋友们 2025-12-22 10:11:58 来源:量子位 上市后的仅15天...
AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身

AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身

AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身 量子位的朋友们 2025...
AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身

AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身

AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身 量子位的朋友们 2025...
真正面向大模型的AI Infra,必须同时懂模型、系统、产业|商汤大装置宣善明@MEET2026

真正面向大模型的AI Infra,必须同时懂模型、系统、产业|商汤大装置宣善明@MEET2026

真正面向大模型的AI Infra,必须同时懂模型、系统、产业|商汤大装置宣善明@MEET2026 量子位的朋友...