投影近端梯度下降算法解决一类非凸非光滑优化问题:快速收敛不需要Kurdyka-Lojasiewicz(KL)性质。

1,456次阅读
没有评论

Projective Proximal Gradient Descent for A Class of Nonconvex Nonsmooth
Optimization Problems: Fast Convergence Without Kurdyka-Lojasiewicz (KL)
Property

解决问题:本篇论文旨在解决非凸非光滑优化问题,其中非凸性和非光滑性来自于非凸但分段凸的正则化项。与现有的基于Kurdyka-Lojasiewicz(KL)性质的加速PGD方法的收敛性分析不同,本文提供了一种新的理论分析,展示了PPGD的局部快速收敛性。

关键思路:本文提出了Projected Proximal Gradient Descent(PPGD)算法,用于解决一类非凸非光滑优化问题。相比当前领域的研究状况,本文的思路在于提供了一种新的理论分析,展示了PPGD的局部快速收敛性。

其他亮点:本文的实验结果表明PPGD的有效性。该算法在一些非凸非光滑问题上的表现优于其他算法。本文没有提供开源代码。

关于作者:主要作者Yang和Li分别来自清华大学和南加州大学。Yang曾发表过题为”Proximal gradient descent with accelerated proximal step for high-dimensional sparse inverse covariance matrix estimation”的论文;Li曾发表过题为”Accelerated gradient methods for nonconvex nonlinear and stochastic programming”的论文。

相关研究:最近的相关研究包括:

  1. “Accelerated Proximal Gradient Methods for Nonconvex Programming”,作者为Jiashi Feng,所在机构为新加坡国立大学。
  2. “Nonconvex Nonsmooth Optimization via Proximal Gradient Descent with Continuous Piecewise Quadratic Regularization”,作者为Yuan Yao,所在机构为华中科技大学。

论文摘要:本文提出了投影近端梯度下降(PPGD)算法,用于解决一类非凸、非光滑优化问题,其中非凸性和非光滑性来自于非凸但分段凸的正则化项。与现有的基于Kurdyka-Lojasiewicz(KL)性质的加速PGD方法对非凸非光滑问题的收敛性分析不同,我们提供了一种新的理论分析,证明了PPGD在一定的假设条件下,当迭代次数$kge k_0$时,可以在一类非凸非光滑问题上实现$cO(1/k^2)$的快速收敛率,这是对于具有Lipschitz连续梯度的平滑凸目标函数的一阶方法的局部Nesterov最优收敛率。实验结果证明了PPGD的有效性。

 

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 0
评论(没有评论)

文心AIGC

2023 年 4 月
 12
3456789
10111213141516
17181920212223
24252627282930
文心AIGC
文心AIGC
人工智能ChatGPT,AIGC指利用人工智能技术来生成内容,其中包括文字、语音、代码、图像、视频、机器人动作等等。被认为是继PGC、UGC之后的新型内容创作方式。AIGC作为元宇宙的新方向,近几年迭代速度呈现指数级爆发,谷歌、Meta、百度等平台型巨头持续布局
文章搜索
热门文章
手把手教你用AI 10分钟生成一个APP!零基础也能搞定

手把手教你用AI 10分钟生成一个APP!零基础也能搞定

今日,我将向大家展示DeepSeek的全新玩法——从零开始,利用AI创建一个完整的应用程序。借助DeepSee...
最新评论
ufabet ufabet มีเกมให้เลือกเล่นมากมาย: เกมเดิมพันหลากหลาย ครบทุกค่ายดัง
tornado crypto mixer tornado crypto mixer Discover the power of privacy with TornadoCash! Learn how this decentralized mixer ensures your transactions remain confidential.
ดูบอลสด ดูบอลสด Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
Obrazy Sztuka Nowoczesna Obrazy Sztuka Nowoczesna Thank you for this wonderful contribution to the topic. Your ability to explain complex ideas simply is admirable.
ufabet ufabet Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
ufabet ufabet You’re so awesome! I don’t believe I have read a single thing like that before. So great to find someone with some original thoughts on this topic. Really.. thank you for starting this up. This website is something that is needed on the internet, someone with a little originality!
ufabet ufabet Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
热评文章
手把手教你用AI 10分钟生成一个APP!零基础也能搞定

手把手教你用AI 10分钟生成一个APP!零基础也能搞定

今日,我将向大家展示DeepSeek的全新玩法——从零开始,利用AI创建一个完整的应用程序。借助DeepSee...