核融合發電有望實現?從美國 NIF 的最新研究看未來發展——《科學月刊》

857次阅读
没有评论

核融合發電有望實現?從美國 NIF 的最新研究看未來發展——《科學月刊》

  • 張博宇/目前專研於高能高密度電漿、電漿推進、核融合等領域。

Take Home Message

  • 美國國家點火設施(NIF)在去年使用慣性控制核融合,首次在可控的核融合反應中,令能量的輸出大於輸入,朝核融合產能邁進了一大步。
  • NIF 將 2.05 百萬焦耳(MJ)的雷射能量注入靶材,經過核融合反應產生了 3.15 MJ 的能量,靶材增益為 1.5。但若將產生雷射能量的耗能考慮進去,則並沒有真正的能量輸出。
  • 臺灣各學校的物理系、核工系、電漿所其實都有學者針對核融合投入理論、模擬、實驗的研究,期望這次NIF的成果能推動相關領域進展。

去(2022)年 12 月,美國能源部(Department of Energy, DOE)、DOE 所屬的國家核安全管理局(National Nuclear Security Administration, NNSA)、勞倫斯利佛摩國家實驗室(Lawrence Livermore National Laboratory, LLNL),以及 LLNL 所屬的國家點火設施(National Ignition Facility, NIF)召開了一場記者會。

在記者會中,他們共同宣布在實驗中實現增益值(gain)大於一的結果,意即實現了第一次在可控的核融合(controlled nuclear fusion)反應中,輸出的能量大於輸入的能量,朝核融合產能邁進了一大步。然而,這項結果是否代表著核融合發電即將被實現?

產生能量的核融合反應

在核融合反應中,若兩個較輕的原子核可以融合成一個較重的原子核,且反應之後的總質量減少,那麼根據愛因斯坦(Albert Einstein)質能互換的關係(E = mc2),減少的質量將會轉換成能量。

最容易產生的核融合反應是將氫(1H)的兩個同位素氘(2H,或稱為 D)及氚(3H,或稱為 T)的原子核融合,產生一個 α 粒子(即氦原子核,4He)加一個中子(neutron, n),同時產生 17.6 百萬電子伏特(MeV)的能量:

D+ T+ α2+ n ——公式一

在公式一的核融合反應中,兩個帶有正電的原子核必須互相靠近才能融合在一起。然而,兩個帶正電的粒子互相具有排斥力,而且愈靠近排斥力就愈大。因此,除非這兩個粒子互相靠近的速度快到排斥力無法阻止它們相撞,核融合才能發生。除此之外,還必須要考量到庫倫散射(Coulomb’s scattering)的現象——若兩個帶正電的原子核沒有正面對撞,則兩者會因為排斥力的原因轉向——更增加了兩者靠近的難度。

因此,只能把氘與氚氣體加熱到高溫,長時間侷限這些高溫的燃料,讓極少數高速的原子核有機會互相靠近並發生核融合反應、產生能量。但即便是最容易發生的氘加氚核融合反應,也需要將燃料加熱到 50 千電子伏特(keV,約為 5.8 億 ℃)才能有最高的反應速率。

有什麼方法可以將燃料加熱到所需要的溫度呢?看回公式一,氘與氚的核融合產物中具有能量為 14.1 MeV 的中子,及 3.5 MeV 的 α 粒子。我們可以讓高能的中子將能量攜出後再轉換為電能,但讓帶有較少能量的 α 粒子保留在系統中加熱燃料。因此普遍實現核融合產能的系統,目標都是將燃料加熱到溫度約 10 keV(約為 1 億 ℃),讓核融合產生的 α 粒子能繼續加熱燃料。

帶來重大進展的核融合研究

目前國際間研究的核融合反應主要可分為磁場控制核融合(magnetic confinement fusion)與慣性控制核融合(inertial confinement fusion),NIF 去年的實驗便是使用間接驅動(indirect-drive)的慣性控制核融合。

在這次的實驗中,當 2.05 百萬焦耳(megajoule, MJ)的雷射能量注入環空器(hohlraum)1並加熱中間的球殼靶材後,經過核融合反應產生 3.15 MJ 的能量,意即靶材增益(target gain)約為 3.15 / 2.05 = 1.5,是人類首次在可控的核融合反應中,輸出的能量大於輸入的能量。

然而,若將產生 2.05 MJ 的雷射能量考慮進去,需要耗掉的能量約為 300 MJ;換言之,這次實驗的真正能量增益(energy gain)約為 3.15 / 300 ≈ 0.01,並沒有真正的能量輸出。

不過,NIF 使用的是 90 年代的雷射技術,它的建造目的是為了國防研究所需,因此並不是最適合核融合的研究場域,在雷射技術上還有很大的進步空間。再者,回顧 NIF 從 2011 年開始進行的核融合實驗,歷經了超過十年終於第一次實現靶材產生的能量超過了雷射的能量,對 NIF 而言可說是向前邁進了一大步。

更重要的是,在去年的實驗中,靶材都進入了 α 粒子能夠繼續加熱燃料的燃燒電漿(burning plasma)範圍,是過去核融合研究從未達到的條件,只要稍微最佳化實驗條件便能讓輸出能量有顯著的提升。因此,這次的重大突破顯示了核融合的可行性並非天方夜譚。

臺灣的核融合相關研究發展

核融合研究本身是一個複雜的系統,在科學上及工程上都有許多的挑戰,許多名字上並沒有「核融合」的研究,其實也都間接與核融合相關。以這次的慣性控制核融合為例,相關的研究就包含了雷射技術、靶材製作技術、粒子量測技術、高速攝影技術等。

若以磁場控制核融合來說,也包含了高溫超導、微波技術、高壓脈衝技術、粒子加速器等科技。當然,最重要的就是電漿科學、電漿加熱、電漿量測技術等研究,因為任何材料在高溫的條件下,都會變成電漿態。 

在臺灣各個學校的物理系、核工系、電漿所分別都有 1~2 位老師在研究電漿相關的領域,尤其成功大學的太空與電漿科學研究所,更有針對核融合投入理論、模擬、實驗的研究。然而,相較於國外蓬勃發展核融合的環境相比,臺灣投入核融合研究的人數仍然明顯不足。

期盼這次NIF的實驗成果,能夠吸引更多臺灣的學生及研究人員投入核融合的相關研究,更刺激政府、民間團體投入更多的資源在核融合研究上。

兩種不同的核融合方式

當物質被加熱到 1 億 ℃ 時,原子內部帶負電的電子便會脫離帶正電的原子核,形成帶負電的電子及帶正電的原子核混合在一起的狀態,稱為電漿(plasma)。我們可以利用帶電粒子的特性侷限高溫的電漿,目前廣泛被研究的核融合反應可分為磁場控制核融合與慣性控制核融合,它們的原理有哪些不同?

磁場控制核融合

核融合發電有望實現?從美國 NIF 的最新研究看未來發展——《科學月刊》熱核融合反應器。圖/科學月刊。

其中一種方式便是藉由稱為「托卡馬克」(tokamak)的環形容器產生核融合。透過環磁場線圈及延著環形方向的電漿電流(plasma electric current),在環磁場線圈的內部形成一個扭曲但繞著環磁場線圈的螺旋磁力線(helical magnetic field),讓電漿不斷延著螺旋磁力線移動,被侷限在環磁場線圈形狀的真空腔中但不與真空腔的腔壁接觸。

最後,再將電漿加熱到 10 keV的溫度。此核融合的方式能透過磁場將低密度(接近真空)的電漿侷限在真空腔中上百秒或更久的時間,讓高溫的氘、氚原子核有機會互相靠近並發生核融合反應。

慣性控制核融合

慣性控制核融合是利用電漿本身的「慣性」來侷限電漿。由於粒子本身的質量不等於零,所以離開系統需要時間,只要燃料在離開系統前反應完畢,那是否被持續侷限就不重要了。

因此,慣性控制核融合必須將氘與氚的燃料加熱到近 10 keV,並壓縮到高壓力(約千兆大氣壓,gigabar)及高密度,讓粒子間碰撞的頻率在極高的密度下大幅度提升,增加核融合發生的頻率。因此僅需要將系統維持/侷限在奈秒(ns)內,同樣能將燃料燒完。

慣性控制核融合可分為直接(direct drive)或間接驅動,不過兩種驅動方式都是為了快速加熱球殼外層。當球殼中心的氘及氚溫度達到 10 keV 時,核融合反應便會從中心開始發生,產生的能量可以由內而外藉由核融合反應燃燒球殼。

核融合發電有望實現?從美國 NIF 的最新研究看未來發展——《科學月刊》因為球殼本身的慣性向外推,因此產生能量。圖/科學月刊。

球殼內部在前述的過程中因為壓縮產生高壓,外部的雷射也會停止使得外部的壓力減少,因此球殼又會被向外推。然而,因為球殼本身的慣性,被向外推較為耗時,因此只要向外燃燒球殼的速度大於球殼被向外推的速度,便能將整個球殼再被外推前燃燒殆盡,產生能量。

註解

  • 〔註 1〕環空器是一種腔壁與腔內達到輻射熱平衡的空腔,在慣性控制核融合實驗中燃料球會被放入環空器,再於環空器兩端孔洞射入雷射提供能量。
核融合發電有望實現?從美國 NIF 的最新研究看未來發展——《科學月刊》
  • 〈本文選自《科學月刊》2023 年 4 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 
评论(没有评论)
Generated by Feedzy