AIGC“弄脏”互联网,大模型“课本”遭污染

666次阅读
没有评论

AIGC“弄脏”互联网,大模型“课本”遭污染

图片来源@视觉中国

文 | 元宇宙日爆,作者 | 木木,编辑 | 文刀

AI制造”充斥互联网,连“真人小姐姐”也可以批量生成。随着生成式人工智能的爆发,一个可怕的现象出现:AI正在污染整个互联网。

知乎成为生成无脑答案的重灾区,这些内容描述简短、概括性十足,细看逻辑混乱、错误百出。打开今日头条,用ChatGPT生成的虚假新闻,内容耸人听闻,足够博人眼球。

AI加持下,虚假、无意义、同质化的内容呈指数级增长,获得大量曝光。莱斯大学和斯坦福大学的科学家研究发现,这些低质、同质化、未经证实的“AI语言”如果不加以甄别,进一步被抓取作为训练AI的语料,AI大模型将会走向崩溃。

AIGC“垃圾”泛滥 内容平台成重灾区

生成式AI越来越低成本化,伴生而来的是AI生成信息的“垃圾网站”。

外媒NewsGuard 发布相关数据报告称,目前已经追踪到了大约277个且还在不断增加的“垃圾网站”,这些网站生产了大量标题诱饵以优化广告收入。

类似的情况也发生在国内,表现形式是AI生成的低质内容。

“中文互联网高质量的问答社区和创作者聚集的原创内容平台”知乎,如今成了AI无脑答案的重灾区,不少答主的内容呈现明显的“GPT风”,机器翻译的文字感、混乱的逻辑扑面而来,有时还会出现事实错误,特别是在金融、医学等专业领域,没有经验的人群很容易被误导。

AIGC“弄脏”互联网,大模型“课本”遭污染

知乎上的“片儿汤话”答案

有知乎用户使用AI每隔一两分钟就可以输出一条几百字的回答。尽管已经被禁言,但其产生的错误信息依然遗留在互联网中。如果你足够细心,你会发现,自带AI问答功能的搜索引擎Bing在中文世界经常会引用知乎的内容。一些生成后就从未过人工核查的错误答案 被Bing AI抓取,造成低质的中文信息蔓延。

AI对互联网内容的侵蚀不仅限于文字。在小红书、淘宝、抖音上,越来越多的“AI真人美女”的图片和视频被批量生产,还有大批“AI摄影”类账号的出现。

AIGC“弄脏”互联网,大模型“课本”遭污染

“AI美女”造就新一代网红脸

AI魔法棒一挥,制作成本低、效率高的“AI美女”一时间成为电商眼中的香饽饽,AI模特、AI主播频频出现。“她们”足够吸睛,但也千篇一律,“网红脸”的队伍里又增加一类AI面孔。

如果只是用AIGC制造美图供人评鉴、学习倒也还好,但AI生图工具产生的内容开始侵犯直接与人们生活相关的领域。

淘宝上,有商家直接用AI生成图来取代商品实物图,一张由Midjourney生成的卡通少女图,被商家打上“绿色衬衫”的标签,售价218元。与之风格相似甚至完全相同的AI生成图,在网上随手就可以找到。利用Midjourney的垫图功能,任何人都可以自己生成无数仿照图,与卖家秀相差甚远的买家秀将再添槽点。

AIGC“弄脏”互联网,大模型“课本”遭污染

淘宝商家用AIGC网图(右)描述商品

AIGC“弄脏”互联网,大模型“课本”遭污染

在中文互联网,AI大有无孔不入之势,专门教人如何用“AI写文赚钱”的课程层出不穷,卖课人号称“一套教学视频跟万能模板,直接套用”。AI话题营造出的失业焦虑中,该类课程受到追捧,曾有人通过卖课月入百万。

如今,学会了使用AI工具的人,将AI生成的内容上传到知乎、今日头条或者小红书上,吸引了流量,但也制造了不少低质量、同质化甚至信息虚假的内容垃圾。

那么,这种AIGC内容“垃圾”会产生危害吗?

靠AI识别真假  技术还不行

泛滥的AIGC内容加速污染互联网环境,除了影响人类获取有效信息的效率外,产出它们的工具“大语言模型”也会走向崩溃的边缘。

莱斯大学和斯坦福大学的科学家研究证明,将人工智能生成的内容输入人工智能模型,会导致输出质量下跌。

研究人员将这一现象解释为“模型自噬障碍”(MAD),即如果AI 只学习其他 AI 生成的内容,在经过几代训练后,AI 将输出无意义的垃圾信息,最终走向“模型崩溃”这一结果。 研究人员表示,对于大语言模型而言,“数据清洁”十分重要。

“世界正在奔向一个未来:生成式AI的爆发,导致了互联网上的合成数据很快就会超过真实数据。”按照研究者的说法,区分合成数据与真实数据,无论对人类本身还是大模型发展都变得势在必行。

最近,中国首个AIGC监管文件《生成式人工智能服务管理暂行办法》落地,该《办法》明确指出AIGC服务提供者要“增强训练数据的真实性、准确性、客观性和多样性”。

AIGC“弄脏”互联网,大模型“课本”遭污染

生成式人工智能服务者有义务保证数据质量

在《办法》的指导下,国内的内容平台也推出针对AI生成内容的管理措施,知乎、抖音、小红书等平台均已发布有关AIGC内容的规定。

《抖音关于人工智能生成内容的平台规范暨行业倡议》称,针对人工智能生成的视频、图片和衍生的虚拟人直播,发布者应对人工智能生成内容进行显著标识,帮助其他用户区分虚拟与现实,特别是易混淆场景。该《倡议》提到,平台提供统一的人工智能生成内容标识能力,帮助创作者打标,方便用户区分。同时,平台提供用户反馈渠道,方便用户反馈违规的生成内容。

知乎也发布了《关于应用AIGC 能力进行辅助创作的社区公告》,公告显示,如果创作者发布AIGC生成的内容时,没有主动使用“包含AI辅助创作”的标签进行声明,平台会添加相关标识并限流,同时鼓励知友对利用AIGC技术,扰乱社区秩序的内容和账号进行举报,举报类型里新增了“AI生成内容”的选项。

规则出现了,但在实操中出现了Bug。

AIGC“弄脏”互联网,大模型“课本”遭污染

知乎用户反馈原创内容被误判为AI生成

知乎创作者们对平台“打标签”(审核)的能力表示质疑。有用户反馈,自己原创的内容被当成了AI创作打了AI标记,甚至有人因此被禁言。

这种“误判”现象背后又隐藏了一个细思极恐的问题。假如平台采用机器来识别AI,机器对同类的“宽容度”或许会很高,让计算机还无法精准识别出AI犯的错误。

最近,OpenAI推出的AI文本识别工具 AI-Text-Classifier就因准确率太低而被官方下架。DetectGPT、GPTZero 等 AI 生成检测工具的失误率也都高得惊人。

随着AIGC技术不断迭代升级,AI生成内容将越来越具备迷惑性,想通过AI识别工具遏制AI内容垃圾的滋生,从技术成果上看成功率还不高。

看来,在充满人工智能的未来,“人工”有多强大,“智能”才有多强大。在AIGC的巨大冲击下,如何不被内容垃圾裹挟、实现人工与智能的良性共进将成为AI下一阶段发展的重要挑战。

更多精彩内容,关注钛媒体微信号(ID:taimeiti),或者下载钛媒体App

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 
评论(没有评论)
Generated by Feedzy