深度探讨CrossFormer如何解决跨尺度问题

656次阅读
没有评论

点击下方卡片,关注“AIWalker”公众号

CV干货,第一时间送达

作者丨FlyEgle    编辑丨极市平台

极市导读

 

浙大联合腾讯等开源的新视觉模块CrossFormer最近开源,该工作通过提出两个模块:CEL和LSDA,弥补了以往架构在建立跨尺度注意力方面的缺陷。本文作者对其进行了详细的分析,介绍了各模块的设计原理模型结构,更深入的了解工作的核心。 >>加入极市CV技术交流群,走在计算机视觉的最前沿

深度探讨CrossFormer如何解决跨尺度问题

论文链接: https://arxiv.org/pdf/2108.00154.pdf 
论文代码:https://github.com/cheerss/CrossFormer

1. 出发点

Transformers模型在处理视觉任务方面已经取得了很大的进展。然而,现有的vision transformers仍然不具备一种对视觉输入很重要的能力:在不同尺度的特征之间建立注意力

  • 每层的输入嵌入都是等比例的,没有跨尺度的特征;
  • 一些transformers模型为了减少self-attention的计算量,衰减了key和value的部分特征表达。

2. 怎么做

为了解决上面的问题,提出了几个模块。

  1. Cross-scale Embedding Layer (CEL)
  2. Long Short Distance Attention (LSDA)
  3. Dynamic Position Bias (DPB)

这里1和2都是为了弥补了以往架构在建立跨尺度注意力方面的缺陷,3的话和上面的问题无关,是为了使相对位置偏差更加灵活,更好的适合不定尺寸的图像和窗口。这篇文章还挺讲究,不仅提出两个模块来解决跨尺度特征attention,还附送了一个模块来搞一个搞位置编码。

3. 模型结构

深度探讨CrossFormer如何解决跨尺度问题模型结构

模型整体的结构图如上所示,与swin-transformers和pvt基本整体结构一致,都是采用了层级的结构,这样的好处是可以迁移到dense任务上去,做检测,分割等。整体结构由以下组成:

  1. Cross-scale embeeding layer (CEL) , 用来做patch embeeding和patch merging(下采样)。
  2. CrossFrom block, 看上图(b),整体看是两个transformer结构的block所组成,其中第一个transformer block采用的是SDA,也就是short distance attention,并且引入了一个DPB模块,第二个transformer block采用的则是LDA,也就是long distance attention,同样也引入了一个DPB模块,两个transformer block串行,组成一个CrossFormer block。
  3. Classification Head, 就是常规的分类MLP,没啥可说的。

3.1 Cross-scale embeeding layer (CEL)

Q&A

Question:既然是层级结构,那么就一定会有尺度上的下采样,那crossformers是怎么做的呢?

Answer: 简单回顾一下pvt和swin的做法

pvt: 假设feature map为, 那么我们就可以做一个stride为2的一个convolution, 变换为,由于patchsize固定,所以,featuremap下采样,对应的就是token的下采样。

swin: swin由于是基于windows做attention,为了达到下采样的效果,选择直接对featuremap上采样,每个4邻域都会分别采样到另一个map里面去,最后则有变换为,也可以看做是stride为2带有空洞的卷积操作。

Question: 万变不离其宗,所以为了达到下采样的效果,用卷积其实就可以了。那么CrossFormer为了实现下采样是怎么做的呢?

Answer:

深度探讨CrossFormer如何解决跨尺度问题

patch embeeding

看上图,很明显,直接用不同卷积核来对输入的图片做卷积,得到卷积后的结果,直接concat一起,作为我们的patch embeeding。想法很简单,实现的话也很朴素,通过不同卷积核的卷积,来获取不同尺度特征的信息,对于变化尺度的物体相对来说是比较友好的,这个可行性其实在很多paper里面都有用到过,比如Pyramidal Convolution, 如下图所示。

深度探讨CrossFormer如何解决跨尺度问题尺度卷积

ps: 这里除了patch embeeding,也就是第一个CEL用的是4个卷积核stride为4来做多尺度,其余的CEL也就是patch merge用的都是2个卷积核stride为2来做的多尺度。两个操作基本相同,只看一份代码即可,核心代码如下:

class PatchEmbed(nn.Module):
    def __init__(self, img_size=224, patch_size=[4], in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        ...

        self.projs = nn.ModuleList()
        for i, ps in enumerate(patch_size):
            if i == len(patch_size) – 1:
                dim = embed_dim // 2 ** i
            else:
                dim = embed_dim // 2 ** (i + 1)
            stride = patch_size[0]
            padding = (ps – patch_size[0]) // 2
            self.projs.append(nn.Conv2d(in_chans, dim, kernel_size=ps, stride=stride, padding=padding))
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0and W == self.img_size[1], 
            f”Input image size ({H}*{W}) doesn’t match model ({self.img_size[0]}*{self.img_size[1]}).”
        xs = []
        for i in range(len(self.projs)):
            tx = self.projs[i](x).flatten(2).transpose(12)
            xs.append(tx)  # B Ph*Pw C
        x = torch.cat(xs, dim=2)
        if self.norm is not None:
            x = self.norm(x)
        return x

代码做了两件事情:

  • 初始化几个不同kernel,不同padding,相同stride的conv
  • 对输入进行卷积操作后得到的feature,做concat

这样, 以输入为224×224为例, 我们通过patch embeeding, 得到了一个56×56的featuremap,输入到第一个stage,输出继续做一个patchmerging,得到了一个28×28的featuremap,输入到第二个stage,输出继续做一个patchmerging,得到了一个14×14的featuremap, 输入到第三个stage, 输出再次做一个patchmerging,得到一个7×7的featuremap,在输入到最后一个stage,最后的输出做分类即可,基本上都是这么一个套路了,大同小异。那么stage里面是怎么做的,看下一节。

3.2 Stage block

对于标准的transformerblock来说,假设输入为, 经过transformer后,我们的输出还是,输入和输出是没有变化的,唯一的尺度变换都在patch embeeding和patch merging。那么我们在改动transformer block的时候,也是要遵守这一原则,对应的,如果想有resolution上的变化,那么就要借助于reshape或者view等操作,好了,不说废话,看这篇文章的crossformer block是怎样的。

CrossFormer Block

深度探讨CrossFormer如何解决跨尺度问题cfblock

CrossFormer block由两个transformer的block堆叠而成,两个transformer block的self-attention都是基于windows来做的,不同之处在于一个考虑的是局部内的信息,一个则是考虑的是全局的信息。这个思想并没有什么突出的地方,目前来说transformer做局部和全局的串联,已经屡见不鲜。

Q&A

Question: 问题来了,怎样实现呢,既要保证基于windows做self-attention,又想要全局的信息?

Answer: 使用一个固定的步长step,比如2或者3,对行和列分别按步长采样,这样可以得到多个全局的信息,同时基于一个大小的windows。这样最大可能的利用到了featuremap的全局性,同时节省了计算的复杂度,假设输入为,step为,那么windows的窗口大小为,原始的复杂度为, 那么基于窗口的attention的复杂度为

CrossFormerblock中的基石: windows self-attention

  • Short Distance Attention(SDA)

    深度探讨CrossFormer如何解决跨尺度问题SDA

    对于一个的feautremap,如果我们想要实现self-attention, 需要先转换为的向量,那么这里就是所谓的long-range的attention,也就是全局的。但是对于MHA来说,部分head还是更多的focus到short-range,结合swin和twins的结论可以验证,局部attention不仅可以达到很好的效果同时还会节省计算。那么怎么获得局部的attention,很简单,如上图所示,只需要把原始的做reshape操作, 既可以得到,那么我们只需要对4个做attention即可,最后在reshape回原始形状,代码如下:

    x = x.reshape(B, H // G, G, W // G, G, C).permute(013245)
    x = attention(x)
    ....

  • Long Distance Attention(LDA)

    深度探讨CrossFormer如何解决跨尺度问题LDA

    从上面的SDA, 我们得到了局部attention,但是也说了,部分head是局部友好的,也就是说,对于self-attention来说,long-range始终是必不可少的,所以还是需要引入long distance attention。如上图所示,颜色一致的部分表示的是归属于同一个sub-windows的,对于原始的,使用step为2进行采样,得到了4个, 可以抽象成两种计算方法,一种是空洞卷积,一种则是1×1的卷积,stride为step,对于图像来说,相邻的位置,像素所表达的信息接近,所以两种得到的都是全局的一个感受野,所以对应我们的attention,也会得到一个近乎全局的attention,代码如下:

    x = x.reshape(B, G, H // G, G, W // G, C).permute(024135)
    x = attention(x)
    ...

    直接看这个代码可能不太好理解,我们用einops简单改写一下,代码如下:
    输入:

x[0,:,:,0]
tensor([[ 1,  2,  3,  4],
        [ 2,  4,  6,  8],
        [ 3,  6,  912],
        [ 4,  81216]])
x.shape
torch.Size([1441])

SDA:a1 = rearrange(x, ‘ b (h g1) (w g2) c -> b h w g1 g2 c ‘, g1=2, g2=2)
a1[0,:,:,:,:,0]
tensor([[[[ 1,  2],
          [ 2,  4]],

         [[ 3,  4],
          [ 6,  8]]],

        [[[ 3,  6],
          [ 4,  8]],

         [[ 912],
          [1216]]]])
对于SDA的情况,实际上就是循环HW,扣2×2的区域下来,那么因为有行遍历优先,或者列遍历优先,实际上得到的结果是顺序的。 LDA:a2 = rearrange(x, ‘ b (g1 h) (g2 w) c -> b h w g1 g2 c ‘, g1=2, g2=2)
a2[0,:,:,:,:,0]
tensor([[[[ 1,  3],
          [ 3,  9]],

         [[ 2,  4],
          [ 612]]],

        [[[ 2,  6],
          [ 412]],

         [[ 4,  8],
          [ 816]]]])
那么对于LDA的情况,我们希望的是外循环是有间隔的,所以把step放到HW的外面,这样循环的时候则是按间隔来进行sample,以达到全局的效果。

CrossFormerblock中的位置编码: Dynamic Position Bias(DPB)

Relative position bias (RPB)随着位置编码技术的不断发展,相对位置编码偏差逐渐的应用到了transformers中,很多的vision transformers均采用RPB来替换原始的APE,好处是可以直接插入到我们的attention中,不需要很繁琐的公式计算,并且可学习性高,鲁棒性强,公式如下:


Q&AQuestion:但是这里有个问题,对于来说,会有一个偏差, 所表达的则是matrix上的i和j的相对位置的embeeding,很显然,如果图像的尺寸变化,那么可能会超出B所表达的范围,会导致PE没有作用,那么要怎么改进呢?Answer:很简单,插值或者切片不就好了,但是切片会导致pe完整性差,损失信息,插值是通过原始的位置信息来模拟出来信息,实际上还是原始的信息,没有信息收益。那本文想到的一个方法就是可以通过学习得到位置信息。

  • Dynamic Position Bias (DPB)

    深度探讨CrossFormer如何解决跨尺度问题DPB

    举个栗子,如果我们的窗口大小为, 那么我们希望的相对位置范围为假设我们不考虑截断距离,如果我们的窗口突然放大到了,那么我们实际的相对位置所表达的信息只是中间的一部分窗口,失去了对外层数据位置的访问。DPB的思想则是,我们不希望通过用实际的相对位置来做embeeidng,而是希望通过隐空间先对位置偏差进行学习,如上图所示。

    DPB,由3个线性层+LayerNorm+ReLU组成的block堆叠而成,最后接一个输出为1的线性层做bias的表征,输入是,由于self-attention是由多个head组成的,所以输出为,代码如下:

  1. 先得到一个相对位置偏差的矩阵,假设group_size的大小为,那么bias的维度为

    self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
        
    # generate mother-set
    position_bias_h = torch.arange(1 - self.group_size[0], self.group_size[0])
    position_bias_w = torch.arange(1 - self.group_size[1], self.group_size[1])
    biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))  # 2, 2Wh-1, 2Wh-1
    biases = biases.flatten(1).transpose(01).float()
    self.register_buffer("biases", biases)

    biases:
    tensor([[-6.-6.],
    [-6.-5.],
    [-6.-4.],
    [-6.-3.],
    [-6.-2.],
    [-6.-1.],

    6.,  4.],
    6.,  5.],
    6.,  6.]])

  2. 构建索引矩阵, 得到了一个的一个索引,从右上角为0开始,向左和向下递增。

    coords_h = torch.arange(self.group_size[0])
    coords_w = torch.arange(self.group_size[1])
    coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
    coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
    relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
    relative_coords = relative_coords.permute(120).contiguous()  # Wh*Ww, Wh*Ww, 2
    relative_coords[:, :, 0] += self.group_size[0] - 1  # shift to start from 0
    relative_coords[:, :, 1] += self.group_size[1] - 1
    relative_coords[:, :, 0] *= 2 * self.group_size[1] - 1
    relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
    self.register_buffer("relative_position_index", relative_position_index)

    relateive_position_index:
    tensor([[ 84,  83,  82,  …,   2,   1,   0],
    85,  84,  83,  …,   3,   2,   1],
    86,  85,  84,  …,   4,   3,   2],
    …,
    [166165164,  …,  84,  83,  82],
    [167166165,  …,  85,  84,  83],
    [168167166,  …,  86,  85,  84]])

  3. 初始化DBP模块

    pos = DynamicPosBias(64 // 48, residual=False)

  4. 通过DBP生成bias的embeeding,通过索引矩阵进行取值,最后与attn相加

    pos = self.pos(self.biases) # 2Wh-1 * 2Ww-1, heads
    # select position bias
    relative_position_bias = pos[self.relative_position_index.view(-1)].view(
        self.group_size[0] * self.group_size[1], self.group_size[0] * self.group_size[1], -1)  # Wh*Ww,Wh*Ww,nH
    relative_position_bias = relative_position_bias.permute(201).contiguous()  # nH, Wh*Ww, Wh*Ww
    attn = attn + relative_position_bias.unsqueeze(0)

  • Rethinking: 对于PE来说,目前的形成方法都是通过embeeding来构建bias矩阵,对于VIT来说,直接使用绝对位置的embeeding,通过学习来更新,对于swins来说,直接使用embeeding而不是相对bias的值,相当于,其实本质上没有太大的差异, 从消融实验结果上来看,DBP和RBP的性能一样。唯一的作用,就是embeeding是后验而不是先验,对于变换的尺寸来说,可能更加友好,只不过这个paper里面没有给出结论,还需要更多的实验来验证。

    深度探讨CrossFormer如何解决跨尺度问题DBP&RBP

  • 综上,我们每个stageblock里面,都是由SDA+DBP&LDA+DBP堆叠而成,与swin类似,奇数layer走SDAblock,偶数layer走LDAblock,从结构上来看,先局部attention,再全局attention,有一点点由点到面的既视感。

    深度探讨CrossFormer如何解决跨尺度问题模型设计

    与其他的paper大同小异了,设计了4种不同FLOPs的模型,Tiny, Small, Big和Large 用来和其他的模型在同等FLOPs下公平比较。表示的是维度,表示的是attention头的个数,表示的是attention窗口的大小,表示的是滑动窗口的间隔。

    4. 实验结果

    深度探讨CrossFormer如何解决跨尺度问题imagenet

    CrossFormer都是再224×224的图片大小下进行训练,使用的类似DeiT的训练策略,不过采用了更大的warmup(20个,DeiT是5), 学习率为1e-3, weightdecay为5e-2, 与DeiT不同的是,这里随着模型大小的改变,分别采用了0.1,0.2,0.3,0.5的drop path rate。可以看到,在同等数量级的FLOPs的情况下,CF在imagenet上都取得了SOTA的效果。

    深度探讨CrossFormer如何解决跨尺度问题detection&segmentation

    可以看到CrossFromer在coco2017上基于RetinaNet架构,也可以达到SOTA的效果,高于Twins模型1.4个ap之多。实例分割则是基于Mask-Rcnn的架构,也是SOTA,超过Swin 1.7个ap。相比而言参数量和FLOPs都更少,性能更好。

    深度探讨CrossFormer如何解决跨尺度问题segmentation

    语义分割上,可以看到可以看到最多提升3.3%的MIOU,非常厉害了。

    深度探讨CrossFormer如何解决跨尺度问题module

    消融实验上,可以看到,当CEL和LSDA一起使用的时候,性能最高。不过这实验也很明显了,CrossFormer参考了PVT和swin的设计思想。使用了LSDA,相比于Swin提升了0.6%个点,设计比swin更加朴实,不错的提升。

    5. 结论

    本文提出了一个新的transformers架构称为CrossFormer。其核心设计包括一个跨尺度嵌入层(CEL)和长短距离注意(LSDA)模块。此外,我们提出了动态位置偏置(DPB),使相对位置偏置适用于任何输入尺寸。实验表明,CrossFormer在几个有代表性的视觉任务上取得了SOTA。特别是,CrossFormer在检测和分割方面有很大的改进,这表明跨尺度嵌入和LSDA对于密集预测的视觉任务特别重要。


     

    Read More 

    正文完
    可以使用微信扫码关注公众号(ID:xzluomor)
    post-qrcode
     
    评论(没有评论)
    Generated by Feedzy