✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
⛄ 内容介绍
在当今数据驱动的世界中,数据回归预测是一项重要的任务。它可以帮助我们预测未来的趋势和模式,为决策提供有力的支持。然而,由于数据的复杂性和噪声的存在,准确地进行回归预测并不容易。为了解决这个问题,研究人员提出了许多机器学习算法,并不断改进它们的性能。
极限学习机(ELM)是一种新兴的机器学习算法,它在回归预测任务中表现出色。ELM的核心思想是通过随机生成一组隐含层神经元的权重和偏置,将输入数据映射到隐含层。然后,通过线性回归方法将隐含层的输出与目标值进行拟合。ELM具有训练速度快、泛化能力强等优点,因此在实际应用中得到了广泛的应用。
然而,ELM算法在处理一些复杂的问题时仍然存在一些挑战。为了进一步提高ELM的性能,研究人员将其与优化算法相结合,以寻找最佳的权重和偏置。灰狼算法(GWO)是一种基于群体智能的优化算法,模拟了灰狼群体的行为。它通过模拟灰狼的捕食行为来寻找最优解。将GWO与ELM相结合,可以有效地优化ELM的性能,提高回归预测的准确性。
GWO-ELM算法的实现过程如下。首先,通过随机生成一组灰狼的位置和速度来初始化灰狼种群。然后,根据每个灰狼的适应度值,选择最优的灰狼作为领导者。接下来,通过模拟灰狼的捕食行为,更新灰狼的位置和速度。最后,使用更新后的灰狼位置和速度来优化ELM的权重和偏置。重复这个过程,直到达到预定的停止条件。
通过将GWO与ELM相结合,我们可以获得更好的回归预测结果。实验证明,GWO-ELM算法在多个数据集上的表现优于传统的ELM算法。它能够更好地适应复杂的数据模式,提高回归预测的准确性和稳定性。
总结起来,ELM回归预测是一项重要的任务,可以帮助我们预测未来的趋势和模式。为了提高ELM算法的性能,我们可以使用灰狼算法进行优化。GWO-ELM算法通过模拟灰狼的捕食行为,优化ELM的权重和偏置,从而提高回归预测的准确性。实验证明,GWO-ELM算法在多个数据集上表现优于传统的ELM算法。因此,GWO-ELM算法是一种值得尝试的方法,可以在实际应用中取得良好的效果。
希望通过本文的介绍,读者对于基于灰狼算法优化极限学习机GWO-ELM实现数据回归预测有了更深入的了解。在未来的研究和实践中,我们可以进一步探索和改进这个方法,以应对更加复杂的数据回归预测问题。
⛄ 部分代码
BS2RV.m - Binary string to real vector This function decodes binary chromosomes into vectors of reals. The chromosomes are seen as the concatenation of binary strings of given length, and decoded into real numbers in a specified interval using either standard binary or Gray decoding. Syntax: Phen = bs2rv(Chrom,FieldD) Input parameters: Chrom - Matrix containing the chromosomes of the current population. Each line corresponds to one individual's concatenated binary string representation. Leftmost bits are MSb and rightmost are LSb. FieldD - Matrix describing the length and how to decode each substring in the chromosome. It has the following structure: [len; (num) lb; (num) ub; (num) code; (0=binary | 1=gray) scale; (0=arithmetic | 1=logarithmic) lbin; (0=excluded | 1=included) ubin]; (0=excluded | 1=included) where len - row vector containing the length of each substring in Chrom. sum(len) should equal the individual length. lb, ub - Lower and upper bounds for each variable. code - binary row vector indicating how each substring is to be decoded. scale - binary row vector indicating where to use arithmetic and/or logarithmic scaling. lbin, ubin - binary row vectors indicating whether or not to include each bound in the representation range Output parameter: Phen - Real matrix containing the population phenotypes.% Author: Carlos Fonseca, Updated: Andrew Chipperfield Date: 08/06/93, Date: 26-Jan-94function Phen = bs2rv(Chrom,FieldD)% Identify the population size (Nind) and the chromosome length (Lind)[Nind,Lind] = size(Chrom);% Identify the number of decision variables (Nvar)[seven,Nvar] = size(FieldD);if seven ~= 7 error('FieldD must have 7 rows.');end% Get substring propertieslen = FieldD(1,:);lb = FieldD(2,:);ub = FieldD(3,:);code = ~(~FieldD(4,:));scale = ~(~FieldD(5,:));lin = ~(~FieldD(6,:));uin = ~(~FieldD(7,:));% Check substring properties for consistencyif sum(len) ~= Lind, error('Data in FieldD must agree with chromosome length');endif ~all(lb(scale).*ub(scale)>0) error('Log-scaled variables must not include 0 in their range');end% Decode chromosomesPhen = zeros(Nind,Nvar);lf = cumsum(len);li = cumsum([1 len]);Prec = .5 .^ len;logsgn = sign(lb(scale));lb(scale) = log( abs(lb(scale)) );ub(scale) = log( abs(ub(scale)) );delta = ub - lb;Prec = .5 .^ len;num = (~lin) .* Prec;den = (lin + uin - 1) .* Prec;for i = 1:Nvar, idx = li(i):lf(i); if code(i) % Gray decoding Chrom(:,idx)=rem(cumsum(Chrom(:,idx)')',2); end Phen(:,i) = Chrom(:,idx) * [ (.5).^(1:len(i))' ]; Phen(:,i) = lb(i) + delta(i) * (Phen(:,i) + num(i)) ./ (1 - den(i));endexpand = ones(Nind,1);if any(scale) Phen(:,scale) = logsgn(expand,:) .* exp(Phen(:,scale));end
⛄ 运行结果



⛄ 参考文献
[1] 刘振男、杜尧、韩幸烨、和鹏飞、周正模、曾天山.基于遗传算法优化极限学习机模型的干旱预测——以云贵高原为例[J].人民长江, 2020, 51(8):6.DOI:CNKI:SUN:RIVE.0.2020-08-003.
[2] 郑小霞,蒋海生,刘静,等.基于变分模态分解与灰狼算法优化极限学习机的滚动轴承故障诊断[J].轴承, 2021(9):6.
[3] 王桥,魏孟,叶敏,等.基于灰狼算法优化极限学习机的锂离子电池SOC估计[J].储能科学与技术, 2021.DOI:10.19799/j.cnki.2095-4239.2020.0389.
❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料
🍅 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合