Matlab 秃鹰搜索算法优化极限学习机(BES-ELM)回归预测

860次阅读
没有评论

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

机器学习领域,回归预测是一项重要的任务,它可以帮助我们根据已有的数据来预测未来的趋势或结果。而极限学习机(ELM)作为一种快速且有效的机器学习算法,在回归预测中得到了广泛的应用。本文将介绍一种基于秃鹰优化的极限学习机(BES-ELM)算法,用于实现数据回归预测。

首先,让我们了解一下极限学习机(ELM)算法的基本原理。ELM算法是一种单隐层前馈神经网络,其主要思想是随机初始化输入层到隐层的连接权重和偏置,然后通过求解线性方程组的方式得到输出层到隐层的权重。ELM算法具有训练速度快、泛化能力强等特点,因此在回归预测任务中表现出色。

然而,传统的ELM算法在权重的初始化过程中存在一定的随机性,可能导致训练结果的不稳定性。为了解决这个问题,研究人员提出了一种基于秃鹰优化的ELM算法(BES-ELM)。秃鹰优化算法是一种启发式优化算法,其模拟了秃鹰在捕食过程中的行为,通过迭代搜索来寻找最优解。BES-ELM算法通过将秃鹰优化算法应用于ELM算法的权重初始化过程,提高了算法的稳定性和准确性。

具体来说,BES-ELM算法的步骤如下:

  1. 随机初始化输入层到隐层的连接权重和偏置;

  2. 使用秃鹰优化算法对连接权重和偏置进行优化;

  3. 求解线性方程组,得到输出层到隐层的权重;

  4. 使用训练数据进行模型训练;

  5. 使用测试数据进行模型验证。

通过以上步骤,我们可以得到一个稳定且准确的回归预测模型。BES-ELM算法在多个回归预测任务中的实验结果表明,相比传统的ELM算法,它具有更好的性能和稳定性。

除了在回归预测任务中的应用,BES-ELM算法还可以应用于其他机器学习任务,如分类、聚类等。它的优点不仅仅体现在算法的性能上,还包括其简单性和易于实现性。

总结起来,基于秃鹰优化的极限学习机(BES-ELM)算法是一种用于实现数据回归预测的有效方法。它通过引入秃鹰优化算法来改进传统的ELM算法,在提高算法的稳定性和准确性方面取得了显著的成果。未来,我们可以进一步研究BES-ELM算法在更复杂任务中的应用,并探索其与其他优化算法的结合,以进一步提高算法的性能和适用性。

⛄ 部分代码

% BS2RV.m - Binary string to real vector%% This function decodes binary chromosomes into vectors of reals. The% chromosomes are seen as the concatenation of binary strings of given% length, and decoded into real numbers in a specified interval using% either standard binary or Gray decoding.%% Syntax: Phen = bs2rv(Chrom,FieldD)%% Input parameters:%% Chrom - Matrix containing the chromosomes of the current% population. Each line corresponds to one% individual's concatenated binary string% representation. Leftmost bits are MSb and% rightmost are LSb.%% FieldD - Matrix describing the length and how to decode% each substring in the chromosome. It has the% following structure:%% [len; (num)% lb; (num)% ub; (num)% code; (0=binary | 1=gray)% scale; (0=arithmetic | 1=logarithmic)% lbin; (0=excluded | 1=included)% ubin]; (0=excluded | 1=included)%% where% len - row vector containing the length of% each substring in Chrom. sum(len)% should equal the individual length.% lb,% ub - Lower and upper bounds for each% variable. % code - binary row vector indicating how each% substring is to be decoded.% scale - binary row vector indicating where to% use arithmetic and/or logarithmic% scaling.% lbin,% ubin - binary row vectors indicating whether% or not to include each bound in the% representation range%% Output parameter:%% Phen - Real matrix containing the population phenotypes.
%% Author: Carlos Fonseca, Updated: Andrew Chipperfield% Date: 08/06/93, Date: 26-Jan-94
function Phen = bs2rv(Chrom,FieldD)
% Identify the population size (Nind)% and the chromosome length (Lind)[Nind,Lind] = size(Chrom);
% Identify the number of decision variables (Nvar)[seven,Nvar] = size(FieldD);
if seven ~= 7 error('FieldD must have 7 rows.');end
% Get substring propertieslen = FieldD(1,:);lb = FieldD(2,:);ub = FieldD(3,:);code = ~(~FieldD(4,:));scale = ~(~FieldD(5,:));lin = ~(~FieldD(6,:));uin = ~(~FieldD(7,:));
% Check substring properties for consistencyif sum(len) ~= Lind, error('Data in FieldD must agree with chromosome length');end
if ~all(lb(scale).*ub(scale)>0) error('Log-scaled variables must not include 0 in their range');end
% Decode chromosomesPhen = zeros(Nind,Nvar);
lf = cumsum(len);li = cumsum([1 len]);Prec = .5 .^ len;
logsgn = sign(lb(scale));lb(scale) = log( abs(lb(scale)) );ub(scale) = log( abs(ub(scale)) );delta = ub - lb;
Prec = .5 .^ len;num = (~lin) .* Prec;den = (lin + uin - 1) .* Prec;
for i = 1:Nvar, idx = li(i):lf(i); if code(i) % Gray decoding Chrom(:,idx)=rem(cumsum(Chrom(:,idx)')',2); end Phen(:,i) = Chrom(:,idx) * [ (.5).^(1:len(i))' ]; Phen(:,i) = lb(i) + delta(i) * (Phen(:,i) + num(i)) ./ (1 - den(i));end
expand = ones(Nind,1);if any(scale) Phen(:,scale) = logsgn(expand,:) .* exp(Phen(:,scale));end

⛄ 运行结果

Matlab 秃鹰搜索算法优化极限学习机(BES-ELM)回归预测

Matlab 秃鹰搜索算法优化极限学习机(BES-ELM)回归预测

Matlab 秃鹰搜索算法优化极限学习机(BES-ELM)回归预测

⛄ 参考文献

[1]刘子诺.基于秃鹰搜索算法和极限学习机的股票价格预测模型[J].中国管理信息化, 2022, 25(22):157-160.

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合

 

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 
评论(没有评论)
Generated by Feedzy