王小川创业 8 个月:大模型还没到谈 PMF 的时候

953次阅读
没有评论

王小川创业 8 个月:大模型还没到谈 PMF 的时候

这是王小川创业做大模型的第 8 个月。很多过去行业的常识、惯性的做法,都不再适用当下的大模型时代,王小川认为,当前很多大模型的应用,并没有真正扣应用户的需求,继续做下去会卷到大厂的竞争赛道里。曾经红杉和 a16z 极力推崇的 PMF(产品/市场契合度)创业标准,因为技术范式的迭代和现状,不再适用于大模型应用的创业。王小川认为当前更需要寻找的是 TPF(技术/产品契合度),「不是一群产品经理先去考察市场,而是应该先思考,当前不完美的(大模型)技术,适合用来做什么产品。」过去人们习惯开发工具,但「我们用 AI 造的,不是工具,而是一个新的『物种』」。极客公园创新大会 2024 上,王小川分享了他在八个月实践后,对大模型落地的新理解,以及在新一轮技术浪潮下创业的思考沉淀。王小川创业 8 个月:大模型还没到谈 PMF 的时候以下是百川智能创始人、CEO 王小川与极客公园创始人 & 总裁张鹏的对谈,经编辑整理。
01国王与画匠

寻找 AI Native 的寓言

张鹏:刚刚 Robin(李彦宏) 也说到,至今也不是很确定什么是 AI 时代的 super app,那我们应该从哪出发?我们之前做产品时,会先制定一个 PMF(Product-Market Fit,产品市场契合度),现在呢?王小川:有两个层面,一个是「拉远」,一个是「拉近」。「拉远」就是重构,在原有的应用中去做改变,比如说,「微信再重构一次」,但这个思考角度会把我们的思路限制住。于是,我想继续「拉远」,如果不把市场当作是这个 super app 的远期目标,而是对人的根本诉求的满足呢?人需要这三样东西:健康、快乐、创造力。前两个无需多讲。至于创造力,人都希望自己的存在会让世界因此变得不同。那 AI 应用怎么帮助人们去改变世界呢?就像「DIKW 模型」(Data-to-Information-to-Knowledge-to-Wisdom Model)这个概念一样,它为人提供信息,提供知识,甚至是智慧。这就是一个远大愿景。而目前很多 AI 应用,比如营销文案撰写,客服对话……这些在我看来,没回到人的根本需求里去;再者,如果大家还这么做,也会和大厂卷入一个竞争赛道。再说「拉近」,你刚提到 PMF——产品市场契合度,现在我想提出一个新词,「TPF」(Technology-Product Fit,技术产品契合度),之前人们只讲求产品和市场的 match,把技术给丢了。我们以前做淘宝、微信时,技术虽说是瓶颈,但只要工程师的水平上去,成本拉上去,基本能够突破这个瓶颈。而现在的 AI 技术,它本身就有一些不完美和不确定性。比如幻觉、时效性等问题,只会自然语言,技术本身有局限性,有不完美所在。既然 AI 技术有这么多的不完美,那就不应该是先派出一堆产品经理去想市场,洞察完了回来就开始做,而是应该先思考这么一个目前不完美的技术,适合用来做什么产品。这里我想聊聊 Character.AI,他们公司的创始人(Noam Shazeer),Transformer 论文作者之一,并非产品背景出身。他非常清楚大模型这种底层技术,知道它肯定会犯错,因此他先拿大模型来做娱乐向产品,再之后,他想到这个技术首先能承载自然对话的形式,于是他就把产品做成一个个角色,一个个人设。张鹏:放在娱乐化的场景里,缺点就变成了特点。王小川创业 8 个月:大模型还没到谈 PMF 的时候王小川:之前,我们在造工具,工具有很多确定性;现在,我们用 AI 造的,不是工具,而是伙伴——一个新物种,一个更像人的应用。它有优点,也有缺点,就和人一样。人有幻觉,我们也能用,那为什么机器有幻觉,我们就不用了呢?最后还是回到具体技术要匹配到什么需求上。这对产品经理来讲是有要求的,公司一号位带着产品经理要产生这样一个共鸣:对这个技术,什么事究竟它擅长,什么事不擅长。再讲一个故事,以前有个国王,瞎了一只眼睛,瘸了一条腿,但他特别自恋,就把全国的画师拉来为他画自画像,结果是画一个杀一个。因为有人画的太像,因诋毁形象被杀;有人刻意美化,因为欺骗君王被杀……直到有个画师,画了张国王打猎的画像,国王因为站在大石块上,瘸腿的缺陷会被遮盖,拉弓的一瞬间国王的那个眼睛也闭上了,这么一来,既不诋毁,又不美化,一下就兼顾了。所以,我觉得现在的产品经理,应该明确 AI 技术有所长,有所不长,去做 TPF 这样的匹配和兼顾。
02

PMF 考核用户量

TPF 要看测试集

张鹏:PMF 我们是会设定一定的目标,能在某些指标上看到我完成了 PMF,而 TPF 这个事情在今天看来是一个起点,如果说未来我们要做 super app,什么情况下可以认为是做好了 TPF 呢?王小川:以前,产品经理更多是写个文档,描述功能、定义和要求,画个结构设计图给老板看:产品长这样就能满足用户什么样的需求,功能又是如何每步都精确做到的。但这种方法论在大模型场景里不适用。因为你每给大模型一个输入,它的输出都是不确定的,面对这种非唯一的对应关系,你很难用一套演绎规则就能做好。那现在怎么办?你得把它拆解开,变成一堆评测集 ,也就是模型在什么输入上能给什么输出的一个测试集合。产品经理不仅要去定义这个产品,还要把定义的产品转化成评测集。这个时候,产品经理拿着评测集去找对口的算法人员,后者通过调 prompt、SFT(supervised fine-tuning)、Post-training 等不同方法去优化算法。也就是说,产品经理去定义评测集,(技术)算法寻找数据集(或叫训练集)训练系统,以满足评测集。

王小川创业 8 个月:大模型还没到谈 PMF 的时候

张鹏:就像是给大模型定个 OKR?王小川:只要干过算法的工程师都会适应这样一种工作方法,给他们一种既给评测集又留白的方式,在我们内部已经变成一种标准工作方法。算法驱动型的产品,用的就是评测集驱动的方式。之前在互联网高速发展的阶段,技术已经不是阻碍的要素了,甚至产品开发已经不是算法驱动,而是工程驱动,只是执行快慢的不同而已。(大模型时代),PMF 不是不对,只是我们缺了一层 TPF,这会使得我们最后发现,不是说产品出来之后市场不满足,而是我们一直在迭代,做不到一个阶段性的产品出来。张鹏:你刚才提到的「设定目标 – 转化评测集 – 让数据集有效训练出满足评测集的要求」,这是你们开发的引擎?王小川:对,这就叫 AI Native。如果是 AGI Native 的话,需要把 AGI 的模型能力更加深入融合进去。王小川创业 8 个月:大模型还没到谈 PMF 的时候张鹏:再追问一下,判断 TPF 做得不错,是说产品的用户量起来了?还是用户评价你的产品体验很好?拿什么判断?王小川:TPF 对产品经理有要求,在产品面世之前,要满足两条。第一,要能够把需求转化成一个测试集,这个测试集能够使得技术工程师在满足过程(目标)的时候,也发现结果是在进步的。第二,一旦做好 demo,也能发现用户提的需求,他可能是简单一句话提的需求,这个需求分布跟产品经理的评测集的分布是一致的。这里用了一个统计/概率的概念,用户需求的分布跟产品经理测试集的分布是一致的,而且评测集的结果是满足用户需求的。所以 TPF 是用测试集的形式来满足的,一方面内部指标满足,然后面世的时候,PMF 反馈会反应用户的需求反馈跟测试集的分布是不是一致,用户是否满意。张鹏:所以用户先要用得爽,还是用得好?前者就是一下子爆发、起势,后者是可以一步步来。今天我们应该追求一下子做爆?还是一层层地,先解决少数人的问题,再解决多数人的?王小川:其实两者不矛盾。但什么是做得好?你很容易和自己比,自己比自己好,一不小心就落入大厂人的老习惯里。如果是成熟大厂,那好 20% 到 30%,已经有巨大的收益;但如果是创业公司,做出的 AI Native 应用,一开始就要让用户用得爽。在满足特定类的需求中,你的产品必须提供 10 倍于竞品的爽感,不是好一点,要让人有惊喜感。因为在今天,大模型并非全能,你只能选亮点,做出 10 倍优秀的来,周边(功能)是 5 倍、3 倍甚至更差的,这样你的波峰就拉得足够高了,后面再逐步将它拓宽。如果一款产品一开始不让你爽,不到一定高度,只是比原来好一些,是不够用的。
03

新时代的创业者

首先要是大模型的超级玩家

张鹏:产品范式进化之下,面对新变局(新范式),创业者应该如何入场?比如刚刚这么兴奋的在聊现在做产品的范式不一样,我们要做新范式下的产品经理。他们应该怎么出发呢?不是所有人都像你,做过搜索,做过很大的产品。我们不能每个人都打这个标签才能入场。其他人应该怎么入场?王小川:我认为要看公司属性。一种公司是端到端的,它(公司)本身是既要做应用,也要做模型;另外一种公司是不怎么碰模型或者用小模型解决,更多是做应用的。因此我认为在路径上会有一些不同,但通常有一个必要的前提——成为大模型用户,就是要把自己当成一个大模型时代的粉丝,去狂热的体验,去感受大模型给(你)带来了什么样的不同之处,先去好奇,去欣赏,去感受(它)做的好不好。张鹏:某种程度上得先成为一个大模型的超级用户。王小川:(你)要把市面上的产品都用到了,极客公园的读者们是天生有这样的动力,充满这样的好奇心的。用起来之后,你的灵感就会冒出来,就会知道这件事情什么是它擅长的,由此再(把它)变成你后面产品的构思。王小川创业 8 个月:大模型还没到谈 PMF 的时候

04

未来两年想做 Super-App

还是得加入大模型公司

张鹏:在今天这个技术涨潮的过程中,可能就得先跟着它一起往上涨,得离它近一点才能考虑怎么运用它。今天,公司不断在发展,你在选人的时候,会关注他的什么气质,或者哪些历史经验?王小川:百川明年要发超级应用,目前还是在路上。我认为今天离目标还没有做到足够的好,那我们只能谈部分的经验,和过程中看到的不足所带来的一些想象。我们蛮希望选有经验的人,如果你真的没(产品)经验,就是小白一个,这种情况反而会更有要求。比如,你要能把产品完整的画面感抛出来。你需要对大模型未来长什么样,包括里面有什么东西是有充分的准备的,就是你要有好奇心、想象力能推动你能做出什么东西,得具备这样一个能耐。同时,我们希望你之前有传统的经验,得把它打散掉,去滋养大模样的产品。我们遇到的不少产品经理,有一套很完整的思维范式和框架。但是做大模型的时候,他想把大模型的技术带到原有的框架范式里面去,而不是把原有的东西再解构出来,这就会带来巨大的挑战。因此,我们希望(你)既有之前的成功经验,但是又能够把自己的经验打散,去滋养大模型,还能想象出大模型的新样子,是既要又要的阶段。如今,中国和美国面临的环境不一样,百川和国内其他大模型公司都是争分夺秒的状态,在这种情况下,公司大概率不会给你三年或者五年的时间去探索。在主力方向的情况下,我们的要求就是既要又要——要有之前的经验,又要能把自己推翻融入。张鹏:那如果我在某个领域有经验,但是没有技术能力,能不能自己独立去做应用的探索?比如我在健康领域有多年积累的经验,又具备你说的特质,我是选择加入你们?还是也可以在这方面接入别人的模型做探索?王小川:两个道路大家都会做。会有人自己探索,但探索过程中很有可能会遇到无力感,就是模型的支持,调优 Prompt,走着走着发现走不动了,因此在今天,我觉得在中国的环境里,更有机会的话,还是加入到一家大模型公司。因为今天应用还没有做到独立铺开做(的阶段)。虽然有文章说可以调大模型自己做应用,但其实这个时代还没到。我认为,未来的两年时间内,更多的是加入一家(大模型)公司,能够获得平台级的支持,帮助你把原有经验打散融入,这样做超级应用成功的概率要大很多,做小应用不一定,但做大的事情要与大模型公司有充分的互动。

05

今天的大模型是「快思考」

AI 需要「慢思考」

张鹏:刚刚大家聊到 OpenAI drama 背后可能有一些技术的关键因素,甚至谈到 Q*(Q-Star)) 可能有「慢思考」,我不知道你有没有关注这件事? 王小川:今年筹备大模型(创业),4 月正式成立公司,我当时提了几个关键词,一个「搜索增强」,第二个「强化学习」。当时提出这点,就是已经看到大模型本身代表了一种「快思考」的方式,Transformer 就是像人一样,「一拍脑袋我给你答案,张口就能说」。它的学习方法和应用推理方法上存在自己的不足,(所以)以大模型为原点,肯定不够。因此当时我们认为,强化学习会对这件事有很大的帮助。就「慢思考」而言,我在百川的工作里也一直非常关注这个领域。今天大部分(技术路线)代表着「快思考」,它需要「慢思考」。说两点自己的见解,一个来说的话,快思考的「思」其实都不叫作思,慢思考的话我认为才有「思」。所以我就提出了一个新的词,以 OpenAI 为代表的大模型,它的知识是「学」过来的,并不强调推理的时候怎么思。孔子有句话是「学而不思则罔,思而不学则殆」,具体投射的话,大模型其实是「学」,其实并不「思」,不像人一样会来回琢磨,把想象空间打开。那什么系统在思呢?反倒是 OpenAI 刚成立公司的时候,以及 DeepMind(之前)做的事情——像 AlphaGo 和打游戏, 这个是在「思」。但那个是强化学习,甚至是多智能体的对抗。AlphaGo 不是个学习系统,它把之前的 6000 万棋局都扔掉了,反而是两个 AlphaGo 自己内部对抗博弈,在博弈中找到了一种新的理解,最后通了,这样就有了「思」。但 AlphaGo「思」完之后,只是停在了原地,只是做特定的任务,没办法把它拓展到其他的领域里。因此我们说大模型(LLM)代表了学,AlphaGo 代表了「思」,如果这两个系统结合在一块就会很厉害。 张鹏:嗯,所以接下来很重要的是真正做到「学」和「思」要合在一起。 王小川:具体我们想象一个场景,不过这不代表 Q*是怎么做的。你问大模型围棋是怎么下的,它其实不会下,做不好。但大模型能判断围棋的输赢吗?它是能够判定的,大模型可以写代码来判断围棋的输赢。甚至说,你再让它写一段代码,在每走一步棋之后,判断棋局的状态转移,它也是能够写出来的。所以我们可以想象一下,如果大模型足够强,虽然它不会直接下围棋,它可以写出下围棋的 Transaction function(状态迁移)的代码,和最后判断围棋输赢的代码,也就是说,大模型有机会写出 AlphaGo 的代码,运行(代码)后它就会下棋了,这件事是有可能发生的。因此我们在想 Q*的时候,在内部猜想大模型是有机会生产出一些用来思考的框架,然后用传统方式来「思」。

06

理想上慢一步

落地上快三步

张鹏:(海外)那边的技术还在不断地向前面的边界做探索,这让人觉得很有压力,你也做大模型,压力转给你,你觉得这个距离怎么丈量?能缩短吗,甚至说未来(我们)能自己创造有所不同的价值吗? 王小川:之前我提过一种说法「理想上慢一步,落地上快三步」,其实最开始不是这么说的,最开始是「理想上慢半步,落地上快一步」,后来去美国(学习)回来后把理想折了个半,就变成了「慢一步」,在落地上乘了个 3,叫「快三步」。 张鹏:怎么理解「理想上慢一步,落地上快三步」? 王小川:跟他们接触之后,我认为双方思考的底层是不一样的。OpenAI 原生是一个非营利组织,就想探索 AGI 的边界,而且他们真的是这么做的。所以他们在想问题的时候,出发点根本就不在一个世界,跟他们拼理想这件事,是有距离的。这种情况下,人和公司都要找到自己的定位。但是在这个土壤里我们确实要有一个自信,就是我们有机会在应用落地里走得更快。就像华为造 GPU 处理器,可能没有那么好的高精尖设备,但不代表我们不能造出东西,甚至来说(可能)在本土能够跑得更快。也许随着我们的用户规模更大、数据积累更大,技术积累上应用走的足够高,甚至还能(拓展)到美国市场去用。这种情况下不代表说一定要到 GPT-4、GPT-5 或者 GPT-6 才有机会去做应用,在不同土壤(是可以)长出不同的东西的。我觉得做应用这件事情是中国传统的一个强项,同样是创新。那我反而认为这是公平的,相对美国而言,我们在理想往前走这方面会比他们弱,但我们应用上会更加的快,中国公司反而面临着一个更好的机会。尤其是在今天的美国,OpenAI 一家独大的情况下,做应用的公司得迎着 OpenAI,它的技术做到什么样,你才能做什么样的应用。但国内是模型公司自己在做应用,这种端到端的连贯性,是有机会在一些领域里把应用(比美国)更快落地跑出来的。 张鹏:你说的这个蛮启发的,我们有的时候肯定很愿意去追求一个很理想、很有使命感的伟大的事情。但是如果说 AGI 是一个大进程,我们可以加入这个「团队」,他们可能是前锋,在突破边界,我们可能是自由人或者后腰,在团队里是有意义的。比如我们把(技术)落地下来变成有意义的东西。所以就是加入团队的感觉。王小川:这两个层面都可以这么推导。作为世界公民,作为中国的公司,在世界上有你的分工,这不是一个敌我的、只是竞争的关系。他们的发明我们尊重,我们该追赶,但我们也可以有自己独有的贡献,而不是我认为我需要自己,(但)这世界并不需要我。张鹏:蛮好的,看来这一波创业里找到了一个跟自己和解的点:就是我们在一个世界的有意义(AI 创业)的 game 里,成为了一个 team member,未必每个人都要成为前锋。

07

百川创业八个月

开始沉淀大模型方法论

张鹏:最后一个问题,关于创业的心态,我们都知道 4 月份的时候每个人都很兴奋,现在跑了 8 个月了,一开始的兴奋估计也被磨掉了,创业还是很难的。今天,在沉淀一段时间后,你这次创业的心态是怎样的?目标呢?王小川:4 月到 12 月,确实团队跑得非常快,也成长得非常迅速。现在的话,我认为到了一个开始去沉淀大模型方法论的时期。虽然我们觉得之前的技术能力、产品观等经验都足够,但实际工作的时候,会觉得还不够轻巧。有时候会发现,有些团队资源相对少,但是因为找到了适合大模型的方法,能更轻巧地用好已有模型,帮助自己构思灵感,做原型,然后跟技术做联动。到这个阶段的话,我觉得是在共同探索大模型方法里,最有效的大模型跟应用之间联动的状态,我们的认知也是在不断提高的。我觉得一个好的状态是每次看一个月前的自己,都觉得是傻子。以前工作的时候,是以周的速度在迭代,现在没到那么敏捷的状态,以月为状态看待自己的不足。在这里面,我们的管理层、产品经理共同去调整自己原有的工作方法,去获得大模型时代的方法论。 张鹏:所以这个是你认为让你很享受的状态。王小川:对,就每天自己都在进步,而且还有多维的成长,不只是说自己会了这些事情,想法比事情要领先半步。但有时候,你会发现走一走,又会有更好的想法出来。张鹏:那公司的目标呢,再过 5 年做到什么样会让你觉得比较满足?王小川:在帮助人创造、健康、快乐理念,我们在这三个方面都有超级应用的探索。但不用到 5 年,5 年真的不敢想,是因为技术发展的高度可能不是今天的我们能理解的。我们的技术人员都感叹说每天的新论文、新的发展,让所有人有一种强烈的推背感。这种情况下,我认为在两年内,能证明大模型确实是可以做去超级应用的,像互联网时代给人类带来的巨大的帮助和希望一样,两年内帮助大家体验到、用到。这是能够抱有的信念。5 年时间,我想象的可能都是全新的玩法了,比如地上都是机器人在跑,大家带着 VR 眼镜,每个人的 Avatar 分身都出来了。5 年时间太长了,能够想到 2 年后的画面我就挺满足了。
如果你关注大模型领域,欢迎扫码加入我们的大模型交流群,来一起探讨大模型时代的共识和认知,跟上大模型时代的这股浪潮。王小川创业 8 个月:大模型还没到谈 PMF 的时候

更多阅读从100多个GPTs里,探究OpenAI究竟想要什么,又做了什么
估值超5亿美元,体验碾压Bard、Bing,AI搜索引擎Perplexity的想象力在哪里?
Meta、Midjourney、Adobe、DALL·E:四大巨头的 AI 绘图模型综合评测
时代周刊:为什么 Sam Altman 是 2023 年度 CEO?
MindOS:站在AGI风口,创业两年的教训与思考
专访Pika Labs创始人:视频模型技术路线尚未确定,明年会迎来AI视频的GPT时刻
转载原创文章请添加微信:geekparker

 

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 0
评论(没有评论)

文心AIGC

2023 年 12 月
 123
45678910
11121314151617
18192021222324
25262728293031
文心AIGC
文心AIGC
人工智能ChatGPT,AIGC指利用人工智能技术来生成内容,其中包括文字、语音、代码、图像、视频、机器人动作等等。被认为是继PGC、UGC之后的新型内容创作方式。AIGC作为元宇宙的新方向,近几年迭代速度呈现指数级爆发,谷歌、Meta、百度等平台型巨头持续布局
文章搜索
热门文章
潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026 Jay 2025-12-22 09...
“昆山杯”第二十七届清华大学创业大赛决赛举行

“昆山杯”第二十七届清华大学创业大赛决赛举行

“昆山杯”第二十七届清华大学创业大赛决赛举行 一水 2025-12-22 17:04:24 来源:量子位 本届...
MiniMax海螺视频团队首次开源:Tokenizer也具备明确的Scaling Law

MiniMax海螺视频团队首次开源:Tokenizer也具备明确的Scaling Law

MiniMax海螺视频团队首次开源:Tokenizer也具备明确的Scaling Law 一水 2025-12...
天下苦SaaS已久,企业级AI得靠「结果」说话

天下苦SaaS已久,企业级AI得靠「结果」说话

天下苦SaaS已久,企业级AI得靠「结果」说话 Jay 2025-12-22 13:46:04 来源:量子位 ...
最新评论
ufabet ufabet มีเกมให้เลือกเล่นมากมาย: เกมเดิมพันหลากหลาย ครบทุกค่ายดัง
tornado crypto mixer tornado crypto mixer Discover the power of privacy with TornadoCash! Learn how this decentralized mixer ensures your transactions remain confidential.
ดูบอลสด ดูบอลสด Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
Obrazy Sztuka Nowoczesna Obrazy Sztuka Nowoczesna Thank you for this wonderful contribution to the topic. Your ability to explain complex ideas simply is admirable.
ufabet ufabet Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
ufabet ufabet You’re so awesome! I don’t believe I have read a single thing like that before. So great to find someone with some original thoughts on this topic. Really.. thank you for starting this up. This website is something that is needed on the internet, someone with a little originality!
ufabet ufabet Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
热评文章
摩尔线程的野心,不藏了

摩尔线程的野心,不藏了

摩尔线程的野心,不藏了 量子位的朋友们 2025-12-22 10:11:58 来源:量子位 上市后的仅15天...
摩尔线程的野心,不藏了

摩尔线程的野心,不藏了

摩尔线程的野心,不藏了 量子位的朋友们 2025-12-22 10:11:58 来源:量子位 上市后的仅15天...
AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身

AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身

AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身 量子位的朋友们 2025...
AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身

AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身

AI体育教练来了!中国团队打造SportsGPT,完成从数值评估到专业指导的智能转身 量子位的朋友们 2025...
真正面向大模型的AI Infra,必须同时懂模型、系统、产业|商汤大装置宣善明@MEET2026

真正面向大模型的AI Infra,必须同时懂模型、系统、产业|商汤大装置宣善明@MEET2026

真正面向大模型的AI Infra,必须同时懂模型、系统、产业|商汤大装置宣善明@MEET2026 量子位的朋友...