RAG调优方案

1,427次阅读
没有评论

前两期,给大家介绍了最基础的RAG需要什么样的模块,这两篇从读者这边的回应来看还是不错的,但问题在于,这个比较基础,在日后的调优中,可能会比较掣肘,今天准备的这篇就是来给大家讲,RAG一般的优化手段会有哪些。但因为各种优化手段并不一定在每个场景都有成效,且不同项目下有些微操可能会不同,我没有准备代码,更多需要大家根据实际情况选用和实操了。

开始之前,我先把前面的两篇基础RAG文章的传送门放这里:

提前说一下,这里的方案,大都看起来没那么炫酷,更多是结合实际情况发现的trick,要想知道论文这块比较前沿的方式,可以期待我后面的文章。

重提:大模型调优

在前些日子,我写过一篇有关大模型调优的方法论:心法利器[103] | 大模型bad case修复方案思考,这里有三个比较核心的观点:

  • 大方向上,调优主要拆解成两块,分别是对大模型的调优和对大模型前后处理的调优。
  • 大模型微调的收益主要在于,但是在实际应用中,对于调优的反馈并不是很明显。
  • 前后处理的调优,能更对症,正因如此,现实情况备受青睐。

因此,在实际应用中,我们更多把着力点放在前后处理,通过前后的调整,争取能够得到更符合需求的回复。

检索模块的调优

值得强调的是,检索模块才是RAG模块调优空间最大的部分,而并非大模型本身,尤其是项目的前期,毕竟“查的准”是大模型最终能吐出正确结果的前提条件,一旦结果查的不对,大模型预测的结果可能还不如不进行RAG,这点是应该能从大量的case分析中得发现的,早期的RAG项目,经验上大概有80%+的问题来源于检索,此时,优化检索的结果,让查询能查的准,就变得非常重要。

那么,检索模块的调优,能有哪些呢?这点其实在早期的搜索领域已经非常丰富的经验了(别只惦记着那个向量召回了),这里提供几个常用的思路:

  • 构造意图识别模块,可以是分类模型、词典,甚至是知识库检索的时候加一个阈值都可以,一方面对知识库外的内容进行拒识(毕竟知识都不存在了,怎么在库里面查都是不对的),另一方面,在有知识类目下的对知识和query进行分类对应,能提升检索的准确性的同时,降低在检索错误时带来的伤害(即使错了知识点,也大概都能在一个领域内的)。
  • 新增字面检索。很多人会提出字面检索的泛化性能不够,但从实际出发,用户的输入往往是长尾效应,即用户的输入习惯会比较集中,在前期尽可能覆盖高频的说法,尽可能匹配到用户常说的内容,其实就已经能让用户体验和整体指标有明显的提升了。当然,字面还能做得更加精细,例如配合实体抽取来做,“周杰伦的七里香”,识别歌手和歌名,这里就能精准匹配到一首歌了。进一步,字面检索本身也有很多优化的trick,例如基于tf-idf做词权重计算,引入BM25等,有无字面检索是一方面,字面检索的好坏还是另一方面。
  • query拓展,借助同义词、大模型拓展、相似度召回等方式,对query进行拓展或者说规范化,例如对某些词汇进行规范化,像一些业务上的简称等。
  • 多路召回和精排。如果一路召回不足,可以考虑多进行几次召回,例如字面、向量召回都做,再例如向量召回也可以多用几个不同的模型,例如qq匹配、qa匹配,浅层模型和深层模型等;召回路多了,此时结果要合并进行筛选,这就需要精排,精排不见得一上来就要模型,毕竟早期没什么数据,而且因为产品原因不可能也没有什么点击数据,此时用一些规则,例如字面的准确率高点,卡一个高点的阈值排在前面就行之类的。
  • 向量召回模型本身也有调优的空间,早期其实直接用预训练好的simcse、BGE、M3E等模型即可,后期结合自己收集的业务数据,进一步做调优就行,具体的微调方案,直接看对应项目的代码,都是有的。

本身搜索就不是什么很新的技术,前人在这里已经有大量的工作,老粉们应该也有所了解,我在这方面也有不少文章,大家可以在我的历史文章里看看有没有值得采用的方案,这里的可操作空间其实非常大,上面提的每个方面其实都能干上好久。

Prompt

获取检索的结果后,在进入大模型之前,还需要通过prompt工程把检索结果、用户query以及其他的辅助信息进行有机拼接再送入模型。如果从结果来看,就是一个字符串拼接的工作,但实际上从对大模型的理解,对有效信息的组合上看,这里无论是所谓的“技术含量”还是“结果收益”上,其实都挺重要的,不应该小看。

首先基础层面,我曾经写过一篇比较重要的文章,强烈建议大家系统学一遍:

此后,便是结果的组合,一般情况,RAG中的prompt常用的格式,和我在git开源的项目是类似的,我直接贴过来:

RAG_PROMPT = """请根据用户提问和参考资料进行回复,回复的内容控制在100字左右。

用户提问:{}

参考材料:
{}”””

在一些情况,我们是能添加一些限定条件或者是调整,使之符合我们实际任务的需求,我这里句一些例子:

  • 字数限定。在一些情况,限定字数能让大模型的输出更加精准,废话比较少,同时说的少出错的概率也就小很多。
  • 角色限定。“你是一名出色的律师”、“你是一名优秀的医生”,类似这样的角色限定,在一些情况能让最终输出的质量有所提升。
  • 细化具体要求,如“只根据参考材料回复,如果参考材料回答不了问题,请拒绝回答”。

当然了,也可以配合上游的query理解、query拓展等操作,给出一些提示,这些提示能让模型的输出不那么离谱。例如:

  • “请注意,此问题需要关注的关键词是:XX”。
  • “文中提及了歌手【周杰伦】”。

另外,还有一些类似先把参考材料进行摘要压缩等的一些方案,在特定场景也会有一些收益。

后处理

除了前处理,还有一些后处理的trick,可以跟大家说一下:

  • 质检,是否有不符合对应场景要求的,例如医疗领域的开药规则,金融领域的话术约束等。
  • 某些约束是否有生效,例如字数。

如果有,则可以把条件再加入,然后让大模型再调整一次,能很大程度有特别的要求。

另外,值得注意的是,有一个大家反复在聊的问题——重复,这里我着重聊一下,从感性和理性角度来聊其内部机理:

  • 感性上,字数和内容没有什么约束,大模型又必须有话说,因此只能多说几次。
  • 理性上,生成角度,部分话术形成了局部最优,所以模型反复说。

因此,核心解决思路就是围绕上面亮点来进行,主要有如下手段:

  • 微调,用领域知识进行微调,提升模型的底层能力,增加谈资。
  • prompt层面,控制输出的字数。
  • 在generate层上,用重复的惩罚项来进行约束,具体可以参考:心法利器[89] | 实用文本生成中的解码方法中提及的参数。

大模型微调

最后才是大模型微调能做的。一般而言,即使在检索模块能返回正确结果的情况下,大模型仍有一定5%-10%的可能会输出错误,这里可以统一把他叫做“幻觉问题”了,这里跟MRC(机器阅读理解)中的错误其实类似,也很难避免,而如果现阶段已经成为短板,急需解决的话,仍然有一些微调的手段来优化这部分问题。目前发现这些常见问题。

  • 模型对某些概念并不能很好的理解,此时要么通过检索层增加对某些关键概念的解释,要么通过大模型微调把某些知识学到大模型里面。
  • 缺少背景知识,例如医疗大模型没有法律方面的知识,或者开放域大模型没有特定专业领域的知识,模型对某些内容的甄别不足,此时需要进一步微调学习领域知识。
  • 提供的背景知识过多,模型无法解析和处理。这个一方面是客观的整体promt太长,另一方面是大模型本身上限所在,此时一方面可以微调,另一方面可以考虑压缩背景知识内容,例如原来取TOP5,现在取TOP3,或者提前对某些内容摘要或者压缩一下,应该也会有所减缓。

小结

本文主要给大家讲一些RAG方面的一些常见的问题以及常用的调优手段,这些基本都是我自己日常开发过程中经常遇到的了,多半是经验性质,希望大家都有用吧。

另外,可能会有一些人会问,这些方案和问题都是怎么发现的,我只想说,还是得多看多分析数据,发现其中的问题,探究问题在哪个环节上出的问题,前文应该提及一些类似5-10%,80%+,这些都是在bad case分析过程统计发现的,这块的方法论,看我这系列的文章吧,这是最后一篇,里面有每一篇的传送:心法利器[40] | bad case治疗术:解决篇


RAG调优方案

我是朋克又极客AI算法小姐姐rumor北航本硕,NLP算法工程师,谷歌开发者专家欢迎关注我,带你学习带你肝一起在人工智能时代旋转跳跃眨巴眼

 

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 0
评论(没有评论)

文心AIGC

2024 年 1 月
1234567
891011121314
15161718192021
22232425262728
293031  
文心AIGC
文心AIGC
人工智能ChatGPT,AIGC指利用人工智能技术来生成内容,其中包括文字、语音、代码、图像、视频、机器人动作等等。被认为是继PGC、UGC之后的新型内容创作方式。AIGC作为元宇宙的新方向,近几年迭代速度呈现指数级爆发,谷歌、Meta、百度等平台型巨头持续布局
文章搜索
热门文章
清库存!DeepSeek突然补全R1技术报告,训练路径首次详细公开

清库存!DeepSeek突然补全R1技术报告,训练路径首次详细公开

清库存!DeepSeek突然补全R1技术报告,训练路径首次详细公开 Jay 2026-01-08 20:18:...
训具身模型遇到的很多问题,在数据采集时就已经注定了丨鹿明联席CTO丁琰分享

训具身模型遇到的很多问题,在数据采集时就已经注定了丨鹿明联席CTO丁琰分享

训具身模型遇到的很多问题,在数据采集时就已经注定了丨鹿明联席CTO丁琰分享 衡宇 2026-01-08 20:...
「北京版幻方」冷不丁开源SOTA代码大模型!一张3090就能跑,40B参数掀翻Opus-4.5和GPT-5.2

「北京版幻方」冷不丁开源SOTA代码大模型!一张3090就能跑,40B参数掀翻Opus-4.5和GPT-5.2

「北京版幻方」冷不丁开源SOTA代码大模型!一张3090就能跑,40B参数掀翻Opus-4.5和GPT-5.2...
开源“裸考”真实世界,国产具身智能基座模型拿下全球第二!

开源“裸考”真实世界,国产具身智能基座模型拿下全球第二!

开源“裸考”真实世界,国产具身智能基座模型拿下全球第二! 西风 2026-01-08 19:02:20 来源:...
最新评论
ufabet ufabet มีเกมให้เลือกเล่นมากมาย: เกมเดิมพันหลากหลาย ครบทุกค่ายดัง
tornado crypto mixer tornado crypto mixer Discover the power of privacy with TornadoCash! Learn how this decentralized mixer ensures your transactions remain confidential.
ดูบอลสด ดูบอลสด Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
Obrazy Sztuka Nowoczesna Obrazy Sztuka Nowoczesna Thank you for this wonderful contribution to the topic. Your ability to explain complex ideas simply is admirable.
ufabet ufabet Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
ufabet ufabet You’re so awesome! I don’t believe I have read a single thing like that before. So great to find someone with some original thoughts on this topic. Really.. thank you for starting this up. This website is something that is needed on the internet, someone with a little originality!
ufabet ufabet Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
热评文章
悲报!Stack Overflow彻底凉了,比18年前上线首月问题数量还少

悲报!Stack Overflow彻底凉了,比18年前上线首月问题数量还少

悲报!Stack Overflow彻底凉了,比18年前上线首月问题数量还少 闻乐 2026-01-05 19:...
全自主、更好用!北京人形 “干活机器人” 惊艳亮相 CES2026

全自主、更好用!北京人形 “干活机器人” 惊艳亮相 CES2026

全自主、更好用!北京人形 “干活机器人” 惊艳亮相 CES2026 量子位的朋友们 2026-01-06 16...
港科大教授实测AI眼镜“作弊”:30分钟碾压95%的学生,把传统教学评估体系整破防了

港科大教授实测AI眼镜“作弊”:30分钟碾压95%的学生,把传统教学评估体系整破防了

港科大教授实测AI眼镜“作弊”:30分钟碾压95%的学生,把传统教学评估体系整破防了 梦瑶 2026-01-0...
海信CES发布全新一代RGB-Mini LED,全球首创玲珑4芯真彩背光

海信CES发布全新一代RGB-Mini LED,全球首创玲珑4芯真彩背光

海信CES发布全新一代RGB-Mini LED,全球首创玲珑4芯真彩背光 量子位的朋友们 2026-01-06...