非工程师指南: 训练 LLaMA 2 聊天机器人

564次阅读
没有评论

引言

本教程将向你展示在不编写一行代码的情况下,如何构建自己的开源 ChatGPT,这样人人都能构建自己的聊天模型。我们将以 LLaMA 2 基础模型为例,在开源指令数据集上针对聊天场景对其进行微调,并将微调后的模型部署到一个可分享的聊天应用中。全程只需点击鼠标,即可轻松通往荣耀之路!😀

为什么这很重要?是这样的,机器学习,尤其是 LLM (Large Language Models,大语言模型),已前所未有地普及开来,渐渐成为我们生产生活中的重要工具。然而,对非机器学习工程专业的大多数人来说,训练和部署这些模型的复杂性似乎仍然遥不可及。如果我们理想中的机器学习世界是充满着无处不在的个性化模型的,那么我们面临着一个迫在眉睫的挑战,即如何让那些没有技术背景的人独立用上这项技术?

在 Hugging Face,我们一直在默默努力为这个包容性的未来铺平道路。我们的工具套件,包括 Spaces、AutoTrain 和 Inference Endpoints 等服务,就是为了让任何人都能进入机器学习的世界。

为了展示这个民主化的未来是何其轻松,本教程将向你展示如何使用 Spaces、AutoTrain 和 ChatUI 构建聊天应用。只需简单三步,代码含量为零。声明一下,我们也不是机器学习工程师,而只是 Hugging Face 营销策略团队的一员。如果我们能做到这一点,那么你也可以!话不多说,我们开始吧!

Spaces 简介

Hugging Face 的 Spaces 服务提供了易于使用的 GUI,可用于构建和部署 Web 托管的 ML 演示及应用。该服务允许你使用 Gradio 或 Streamlit 前端快速构建 ML 演示,将你自己的应用以 docker 容器的形式上传,甚至你还可以直接选择一些已预先配置好的 ML 应用以实现快速部署。

后面,我们将部署两个来自 Spaces、AutoTrain 和 ChatUI 的预配置 docker 应用模板。

你可参阅 此处,以获取有关 Spaces 的更多信息。

AutoTrain 简介

AutoTrain 是一款无代码工具,可让非 ML 工程师 (甚至非开发人员😮) 无需编写任何代码即可训练最先进的 ML 模型。它可用于 NLP、计算机视觉、语音、表格数据,现在甚至可用于微调 LLM,我们这次主要用的就是 LLM 微调功能。

你可参阅 此处,以获取有关 AutoTrain 的更多信息。

ChatUI 简介

ChatUI 顾名思义,是 Hugging Face 构建的开源 UI,其提供了与开源 LLM 交互的界面。值得注意的是,它与 HuggingChat 背后的 UI 相同,HuggingChat 是 ChatGPT 的 100% 开源替代品。

你可参阅 此处,以获取有关 ChatUI 的更多信息。

第 1 步: 创建一个新的 AutoTrain Space

1.1 在 huggingface.co/spaces 页面点击 “Create new Space” 按钮。

非工程师指南: 训练 LLaMA 2 聊天机器人

1.2 如果你计划公开这个模型或 Space,请为你的 Space 命名并选择合适的许可证。

1.3 请选择 Docker > AutoTrain,以直接用 AutoTrain 的 docker 模板来部署。

非工程师指南: 训练 LLaMA 2 聊天机器人

1.4 选择合适的 “Space hardware” 以运行应用。(注意: 对于 AutoTrain 应用,免费的 CPU 基本款就足够了,模型训练会使用单独的计算来完成,我们稍后会进行选择)。

1.5 在  “Space secrets” 下添加你自己的 “HF_TOKEN”,以便让该 Space 可以访问你的 Hub 帐户。如果没有这个,Space 将无法训练或将新模型保存到你的帐户上。(注意: 你可以在 “Settings > Access Tokens” 下的 “Hugging Face Profile” 中找到你的 HF_TOKEN ,请确保其属性为 “Write”)。

1.6 选择将 Space 设为“私有”还是“公开”,对于 AutoTrain Space 而言,建议设为私有,不影响你后面公开分享你的模型或聊天应用。

1.7 点击 “Create Space” 并稍事等待!新 Space 的构建需要几分钟时间,之后你就可以打开 Space 并开始使用 AutoTrain。

非工程师指南: 训练 LLaMA 2 聊天机器人

第 2 步: 在 AutoTrain 中启动模型训练

2.1 AutoTrain Space 启动后,你会看到下面的 GUI。AutoTrain 可用于多种不同类型的训练,包括 LLM 微调、文本分类、表格数据以及扩散模型。我们今天主要专注 LLM 训练,因此选择 “LLM” 选项卡。

2.2 从 “Model Choice” 字段中选择你想要训练的 LLM,你可以从列表中选择模型或直接输入 Hugging Face 模型卡的模型名称,在本例中我们使用 Meta 的 Llama 2 7B 基础模型,你可从其 模型卡 处了解更多信息。(注意: LLama 2 是受控模型,需要你在使用前向 Meta 申请访问权限,你也可以选择其他非受控模型,如 Falcon)。

2.3 在 “Backend” 中选择你要用于训练的 CPU 或 GPU。对于 7B 模型,“A10G Large” 就足够了。如果想要训练更大的模型,你需要确保该模型可以放进所选 GPU 的内存。(注意: 如果你想训练更大的模型并需要访问 A100 GPU,请发送电子邮件至 api-enterprise@huggingface.co)。

2.4 当然,要微调模型,你需要上传 “Training Data”。执行此操作时,请确保数据集格式正确且文件格式为 CSV。你可在 此处 找到符合要求的格式的例子。如果你的数据有多列,请务必选择正确的 “Text Column” 以确保 AutoTrain 抽取正确的列作为训练数据。本教程将使用 Alpaca 指令微调数据集,你可在 此处 获取该数据集的更多信息。你还可以从 此处 直接下载 CSV 格式的文件。

非工程师指南: 训练 LLaMA 2 聊天机器人

2.5 【可选】 你还可以上传 “Validation Data” 以用于测试训出的模型,但这不是必须的。

2.6 AutoTrain 中有许多高级设置可用于减少模型的内存占用,你可以更改精度 (“FP16”) 、启用量化 (“Int4/8”) 或者决定是否启用 PEFT (参数高效微调)。如果对此不是很精通,建议使用默认设置,因为默认设置可以减少训练模型的时间和成本,且对模型精度的影响很小。

2.7 同样地,你可在 “Parameter Choice” 中配置训练超参,但本教程使用的是默认设置。

非工程师指南: 训练 LLaMA 2 聊天机器人

2.8 至此,一切都已设置完毕,点击 “Add Job” 将模型添加到训练队列中,然后点击 “Start Training”(注意: 如果你想用多组不同超参训练多个版本的模型,你可以添加多个作业同时运行)。

2.9 训练开始后,你会看到你的 Hub 帐户里新创建了一个 Space。该 Space 正在运行模型训练,完成后新模型也将显示在你 Hub 帐户的 “Models” 下。(注: 如欲查看训练进度,你可在 Space 中查看实时日志)。

2.10 去喝杯咖啡。训练可能需要几个小时甚至几天的时间,这取决于模型及训练数据的大小。训练完成后,新模型将出现在你的 Hugging Face Hub 帐户的 “Models” 下。

非工程师指南: 训练 LLaMA 2 聊天机器人

第 3 步: 使用自己的模型创建一个新的 ChatUI Space

3.1 按照与步骤 1.1 > 1.3 相同的流程设置新 Space,但选择 ChatUI docker 模板而不是 AutoTrain。

3.2 选择合适的 “Space Hardware”,对我们用的 7B 模型而言 A10G Small 足够了。注意硬件的选择需要根据模型的大小而有所不同。

非工程师指南: 训练 LLaMA 2 聊天机器人

3.3 如果你有自己的 Mongo DB,你可以填入相应信息,以便将聊天日志存储在 “MONGODB_URL” 下。否则,将该字段留空即可,此时会自动创建一个本地数据库

3.4 为了能将训后的模型用于聊天应用,你需要在 “Space variables” 下提供 “MODEL_NAME”。你可以通过查看你的 Hugging Face 个人资料的 “Models” 部分找到模型的名称,它和你在 AutoTrain 中设置的 “Project name” 相同。本例中模型的名称为 “2legit2overfit/wrdt-pco6-31a7-0”。

3.5 在  “Space variables” 下,你还可以更改模型的推理参数,包括温度、top-p、生成的最大词元数等文本生成属性。这里,我们还是直接使用默认设置。

非工程师指南: 训练 LLaMA 2 聊天机器人

3.6 现在,你可以点击 “Create” 并启动你自己的开源 ChatGPT,其 GUI 如下。恭喜通关!

非工程师指南: 训练 LLaMA 2 聊天机器人

如果你看了本文很想尝试一下,但仍需要技术支持才能开始使用,请随时通过 此处 联系我们并申请支持。Hugging Face 提供付费专家建议服务,应该能帮到你。

🤗 宝子们可以戳 阅读原文 查看文中所有的外部链接哟!

英文原文: https://hf.co/blog/Llama2-for-non-engineers

原文作者: Andrew Jardine,Abhishek Thakur

译者: Matrix Yao (姚伟峰),英特尔深度学习工程师,工作方向为 transformer-family 模型在各模态数据上的应用及大规模模型的训练推理。

 

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 
评论(没有评论)
Generated by Feedzy