GNN的逆袭:在LLM时代的挑战与突破

779次阅读
没有评论

GNN的逆袭:在LLM时代的挑战与突破

大模型时代,图学习的发展方向是什么?

过去一年图学习领域有哪些值得盘点的技术

在复杂图分析、大规模数据处理、推荐、风控等领域的应用有哪些进展?2024年1月27日,DataFun将邀请行业专家学者共同分享机器学习的年度进展以及在复杂图分析、大规模数据处理、推荐、风控等领域的应用实践探索。GNN的逆袭:在LLM时代的挑战与突破

议题详情

GNN的逆袭:在LLM时代的挑战与突破

00

GNN的逆袭:在LLM时代的挑战与突破

主论坛

GNN的逆袭:在LLM时代的挑战与突破

吴凌飞 AnytimeAI,CEO&联合创始人

个人介绍:吴凌飞博士,毕业于公立常春藤盟校之一的威廉与玛丽学院 计算机系。他的主要研究方向是机器学习,表征学习,和自然语言处理的有机结合,特别是图神经网络及其应用。目前他是AnytimeAI的CEO&联合创始人。在这之前,他是京东硅谷研究中心的首席科学家,带领 了30 多名机器学习/自然语言处理科学家和软件工程师组成的团队,构建智能电子商务个性化系统。他目前著有图神经网络图书一本,并发表了100多篇顶级会议和期刊的论文,谷歌学术引用将近3000次(H-index 28, I10-index 68)。他主持开发的Graph4NLP软件包,自2021年中发布以来收获1500+ Stars,180+ Forks,深受学术界和工业界欢迎。他曾是 IBM Thomas J. Watson 研究中心的高级研究员,并领导10 多名研究科学家团队开发前沿的图神经网络方法和系统,三次获得IBM杰出技术贡献奖。他是 40 多项美国专利的共同发明人,凭借其专利的高商业价值,共获得八项IBM发明成果奖,并被任命为 IBM 2020 级发明大师。他带领团队获得两个2022年AAAI人工智能创新应用奖(全球八个), IEEE ICC’19, DLGMA’20, DLG’19等多个会议和研讨会的最佳论文奖和最佳学生论文奖。他的研究被全球众多中英文媒体广泛报道,包括 NatureNews, YahooNews, AP News, PR Newswire, The Time Weekly, Venturebeat, 新智元,机器之心,AI科技评论等。他是KDD,AAAI,IEEE BigData会议组委会委员,并开创和担任全球图深度学习研讨会(与 AAAI20-22 和KDD20-22等联合举办)和图深度学习自然语言处理研讨会(与 ICLR22 和NAACL22等联合举办)的联合主席。他目前担任IEEE Transactions on Neural Networks and Learning Systems 和ACM Transactions on Knowledge Discovery from Data的副主编,并定期担任主要的 AI/ML/NLP 会议包括 KDD,EMNLP, IJCAI,AAAI等的SPC/AC。

陈红阳 之江实验室 图计算研究中心副主任

个人介绍:陈红阳,2011年于东京大学获博士学位,曾任日本富士通研究所研究员,现任之江实验室图计算研究中心副主任/高级研究专家(正高级研究员),主要从事大数据与人工智能,数据驱动智能系统方向的研究。曾担任多个IEEE知名期刊编辑和IEEE国际会议领域主席等学术职位。主持国家重点研发课题、国自然基金面上项目等。发表ACM/IEEE期刊和CCF-A类会议论文80多篇。在ICT领域拥有30余项国际专利,多项专利被采纳成为国际标准。获IEEE PIMRC2009国际会议最佳论文奖,ICDM2023最佳学生论文奖,OGB图机器学习挑战赛全球冠军,2020年当选IEEE Distinguished Lecturer,获评“2022年中国智能计算科技创新人物”和2023“算力中国”青年先锋人物。

演讲题目:图计算加速科学发现

演讲提纲:在科学计算领域,图计算技术可以启动很重要的作用。通过图计算,在生物制药,进行药物分子生成、药物性质预测、靶点发现等,已经展示出很好的潜力。本报告介绍图计算相关成果,及与科学计算结合的应用案例。并介绍通过软硬件协同优化,图计算可以是加速科学发现的重要手段。

扫码报名免费观看

GNN的逆袭:在LLM时代的挑战与突破

01

GNN的逆袭:在LLM时代的挑战与突破

复杂图分析论坛

GNN的逆袭:在LLM时代的挑战与突破

出品人:杜仑 微软 主管研究员

个人介绍:杜仑,目前是微软DKI组主管研究员,主要研究方向包括图深度学习、表格分析智能、以及它们和大语言学模型结合的相关研究。目前已发表学术会议和期刊论文60余篇,其中包括两篇获奖文章,荣获了Best Research Paper Runner-UP Award (CIKM’19)以及Best Short Paper Award (CIKM’21),曾担任KDD, ICML, NeurIPS, WWW等多个顶级学术会议的PC或SPC,并荣获NeurIPS’22 Top Reviewer称号。曾带领队伍在WSDM’22和NeurIPS’22两次不同场景的链接预测问题上都收获亚军。在加入微软亚洲研究院前,2019年他硕士毕业于北京大学智能科学系。

毕文东 腾讯 研究员

个人介绍:腾讯算法研究员,主要研究方向为图神经网络、社交网络挖掘,中科院计算所硕士,本科毕业于上海交通大学,曾获国奖、北京市优秀毕业生,一作论文发表在KDD、WWW、CIKM、WSDM等学术会议。

演讲题目:复杂图上的图迁移学习

演讲提纲:迁移学习被广泛应用于缓解数据稀疏、噪声等问题,图迁移学习成为近期的研究热点。复杂图的异质性、异配性、不均衡等问题为图上的知识迁移带来了全新的挑战,本次分享将围绕图上的节点知识迁移展开,并介绍复杂图上的图重连算法、及图重连增强的图迁移学习方法,相关成果已发表在WWW2023、CIKM2023等学术会议。

听众收益:

1. 复杂图上如何实现迁移学习

2. 复杂图上如何实现高效图重连

3. 图重连增强的图迁移学习

何东晓 天津大学 教授

个人介绍:何东晓,天津大学智能与计算学部教授、博士生导师。主要从事图数据挖掘和图机器学习研究,主持国家自然科学基金项目3项(含面上项目2项),国家重点研发课题1项。在人工智能、机器学习和数据挖掘领域的顶刊或顶会上发表论文50余篇,其中一作或通讯发表CCF A类期刊或会议长文20余篇,谷歌引用超2700次,H因子30。以通讯作者指导学生获数据挖掘顶会ICDM21最佳学生论文奖亚军(4/990),一作获全国社会媒体处理大会SMP2022最佳论文奖,一作获《自动化学报》年度优秀论文奖;入选百度学术AI华人女性青年学者(全球80名)入选、天津市131人才。

演讲题目:真实复杂场景下图神经网络

演讲提纲:当前图神经网络在处理真实复杂图数据的时候存在“同质性限制”、过平滑以及标签难获得的问题,本报告针对这些问题介绍基于生成对抗模型设计的对抗表征机制而非传统的对抗表征结果的无监督图表征学习算法;针对图神经网络“同质性限制”的问题,介绍基于块建模对邻域信息进行分类传播聚合的新型图神经网络传播聚合机制,该新机制图神经网络在同配和异配网络上均取得较好的效果;针对图神经网络过平滑的问题,介绍由类别区分度引导的深层图神经网络,通过层间过滤、初始补偿以及全局优化等三阶段生成具备区分不同类别能力的节点表征;针对图数据标签难获得的问题,介绍自监督下利用自适应边同质性判别机制同时解决对比学习无增强场景中采样问题和编码器异质信息传播问题,使自监督编码器在同异配数据集均能获取较好的表征。

听众收益:

1. 如何突破图神经网络的“同质性限制”?

2. 图神经网络如何可以做到深层?

3. 图神经网络如何做成无监督模型?

扫码报名免费观看

GNN的逆袭:在LLM时代的挑战与突破

02

GNN的逆袭:在LLM时代的挑战与突破

大规模图学习论坛

GNN的逆袭:在LLM时代的挑战与突破

出品人:姚亮 腾讯 高级研究员

个人介绍:姚亮,现任腾讯高级研究员,博士毕业于浙江大学,曾在美国西北大学任博士后研究员。以第一作者在AAAI、SIGIR、TKDE等顶级会议及期刊发表论文多篇,谷歌学术H指数21,入选全球前2%顶尖科学家、AI 2000人工智能全球最具影响力学者。现在腾讯游戏从事图学习、大语言模型相关的研究和落地。

曾立 华为 数据智能计算专家

个人介绍:本科和博士毕业于北京大学计算机科学技术专业,在图处理领域有九年多的实践经验,主导研发过图数据库系统gStore、电信图查询引擎、分布式图学习加速组件,将亿级电信网络的图查询和图学习性能提升至行业标杆TigerGraph和DGL的2倍以上,内存占用降低一半。当前负责图技术探索及大模型全栈加速。

演讲题目:电信网络中的图学习性能优化

演讲提纲:网络运维和体验是电信领域的重要业务,其中高效精准的故障根因定位是保障网络性能持续领先的关键,而以用户为中心的产商品推荐是实现5G用户发展的重要策略。通过将网络域、业务域、社会域数据建模成图,并通过图学习进行深度分析和挖掘隐性关联,可以更好地实现故障定位和产商品推荐。由于电信网络高达百亿边万亿属性,以及客户资源受限、数据安全等约束,图学习的性能和成本存在巨大挑战,需在分布式集群中实现倍数提升。

听众收益:

1. 客户集群复杂异构、内存有限,如何既快又好地完成超大电信网络的子图分割?

2. 训练时图表征更新频繁,跨机通信代价高昂,如何设计合适的分布式图索引?

3. 原始数据须从HDFS加载,面对加载解析及图构建代价高的问题,如何系统优化?

扫码报名免费观看

GNN的逆袭:在LLM时代的挑战与突破

03

GNN的逆袭:在LLM时代的挑战与突破

图与推荐论坛

GNN的逆袭:在LLM时代的挑战与突破

出品人:纪厚业 京东集团博士管培生,京东推荐视频/直播召回负责人

个人介绍:纪厚业博士,京东集团博士管培生,京东推荐视频/直播召回负责人,主要关注图神经网络和推荐系统,在 WWW / AAAI / TKDE / TOIS / ICDM / EMNLP / MM等顶级会议/期刊发表论文10+篇并担任相应的审稿人,引用2100+,荣获WebConf最有影响力论文(2019),WebConf best paper nomination(2021), 世界人工智能大会青年优秀论文提名奖(2022)。曾在中科院自动化所/字节/淘宝/蚂蚁金服/达摩院/华为/京东/腾讯分享图与推荐技术。

04

GNN的逆袭:在LLM时代的挑战与突破

图与风控论坛

GNN的逆袭:在LLM时代的挑战与突破

出品人:徐德华 翼支付 风险管理部总监

个人介绍:风险管理部总监,模型团队负责人,负责支付、电商、金融、通讯反诈等风控模型体系建设。

李祥 度小满 数据智能应用部 图机器学习负责人

个人介绍:博士毕业于中科院信息安全国家重点实验室,期间主要研究社交网络数据挖掘相关方向。加入度小满后,长期从事图机器学习方向的技术创新和业务落地,主导迭代了多版基于征信报告的图风控模型,并在实际业务中有效提升了风控能力。

演讲题目:图机器学习在度小满风控中的探索和实践

演讲提纲:

图机器学习是近几年较为热门的研究方向,同时,金融风控是图机器学习技术落地较为热门也较为成熟的业务场景。度小满在图风控上已经进行了长时间的探索、创新和落地,建设了完善的数据、模型和应用体系,最终在实际业务中证明了图机器学习技术在风控场景中的潜力和价值。

听众收益:

1、图机器学习的发展历史和应用现状

2、图机器学习和金融风控

3、度小满图风控能力建设

陈曦 蚂蚁集团 技术应用开发

个人介绍:复旦大学硕士毕业,在蚂蚁集团主要负责图领域技术应用,致力于应用图挖掘技术解决风险管理业务中的实际难题,推动风管技术的创新与效率提升。

演讲题目:图技术在金融反欺诈中的应用

演讲提纲:

在金融反欺诈的实践中,图技术发挥着至关重要的作用。通过构建客户、账户、交易等实体的关系图谱,我们能够有效地揭示隐藏在庞大数据背后的欺诈行为。本次演讲将通过图在蚂蚁风控中的真实案例,展示图技术在揭示复杂网络中的欺诈行为、加强风险控制、提高风险识别效率等方面的巨大潜力,以及当前图技术在金融反欺诈中面临的挑战和未来的发展趋势。具体包括:

1. 图在金融反欺诈中的应用背景

2. 图驱动的感知研判决策处置

3. 图在金融反欺诈中的演进

4. 图在金融反欺诈中的总结与展望

听众收益:

1. 图技术如何被实际应用于金融反欺诈工作

2. 图在反欺诈中如何提供对数据的深度洞见,以加强数据驱动的决策过程

3. 如何利用图技术来发现复杂的欺诈模式

4. 图技术在反欺诈中的演进过程是怎样的

5. 未来图在反欺诈中如何发展

张梦玫 翼支付 高级技术专家

个人介绍:张梦玫,博士毕业于北京邮电大学,电信翼支付高级技术专家,主要关注可信图神经网络与金融风控领域,相关工作发表在WWW,AAAI,ICDM,NeurIPS,USENIX等国际会议。

演讲题目:风控场景中图模型的范式变迁

演讲提纲:

1. 风控图机器学习模型

2. 风控图深度学习模型

3. 风控图大模型

4. 翼支付实践案例

听众收益:通过技术与业务应用案例的分享,听众将深入了解图模型在金融风控的应用场景和范式变迁,了解应用中的挑战、解决方案和成功案例。

GNN的逆袭:在LLM时代的挑战与突破

扫码报名,更多内容更新中……

 

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 
评论(没有评论)
Generated by Feedzy