开源全能图像模型媲美GPT-4o!解决扩散模型误差累计问题

936次阅读
没有评论

开源全能图像模型媲美GPT-4o!解决扩散模型误差累计问题

同时完成图像理解、生成和编辑

ModelScope团队 投稿

量子位 | 公众号 QbitAI

OpenAI GPT-4o发布强大图片生成能力后,业界对大模型生图能力的探索向全模态方向倾斜,训练全模态模型成研发重点。

开源的MLLMs和扩散模型已经过大规模预训练,其从零开始训练统一任务,不如取长补短,将MLLMs的语言建模能力,与扩散模型的像素级图像建模能力,进行有机的结合。

基于这个思路,ModelScope团队提出可同时完成图像理解、生成和编辑的统一模型Nexus-Gen,在图像质量和编辑能力上达GPT-4o同等水平,并将成果全方位开源,望引发开发者讨论,促进All-to-All模型领域发展。

开源全能图像模型媲美GPT-4o!解决扩散模型误差累计问题

模型先进行图像生成,然后进行图像理解的可视化案例:

开源全能图像模型媲美GPT-4o!解决扩散模型误差累计问题

Nexus-Gen技术细节

总体框架

Nexus-Gen采用了与GPT-4o类似的 token → [transformer] → [diffusion] → pixels 技术路线,融合了SOTA MLLMs的强大文本预测能力和Diffusion模型的强大图像渲染能力,其总体架构如图所示。

开源全能图像模型媲美GPT-4o!解决扩散模型误差累计问题

作为一个All-to-All模型,Nexus-Gen的输入和输出都支持图像和文本模态,自回归Transformer输出的文本Token进行分类后解码成对应的输出文本。而输出的视觉Token的embeddings则会作为条件输入给Vision Decoder中解码为输出图像。

之前的All-to-All模型大多直接使用自回归Transformer直接对图像的像素空间进行建模,然后用VAE等模型解码为图像,导致图像质量较差。

为了保证图像质量,Nexus-Gen选择在高维特征空间对图像进行建模,并选择SOTA的扩散模型作为视觉解码器。

相比于处理单一任务的模型,All-to-All模型的潜力在于图像理解、生成、编辑等任务可以相互促进、互相组合

为了完成这一目标,将模型的输入和输出特征空间限定在同一个连续高维特征空间,统一使用Vision Encoder编码图像得到高维特征。对于理解任务,这些特征直接输入模型中作为先验。对于生成任务,这些特征则作为真值指导模型的训练。

预填充自回归策略

在训练阶段,自回归模型直接使用真值作为输入序列,然后将输入序列左移一位后计算损失函数。在推理阶段,则采用Token-by-Token的自回归:即每预测一个Token,就将其送回输入,预测后续的Token。

团队发现,将这种自回归范式,直接运用在连续特征空间的图像Embedding预测上,会带来比较严重的误差累计问题。

如下图所示,从第一个黄色的图像Token开始,预测的Embedding就存在误差。将带误差的Embedding送回输入中,会导致后续的Embedding预测误差不断增大,最终导致整个图像Token序列预测失败。

开源全能图像模型媲美GPT-4o!解决扩散模型误差累计问题

误差累计本质上是由训练和推理行为不一致导致的。为了解决这个问题,魔搭团队提出了预填充自回归的策略,如下图所示。在训练时使用可学习特殊Token填充对应的图像Embedding位置,这样就可以让模型学习直接预测任意位置的图像Token的能力。

在推理阶段,只要预测到图像的起始Token BOI,就直接预填充N个特殊Token到输入序列中。通过这种方式,能够保证训练和推理阶段行为的一致性,从而消除误差累计。

开源全能图像模型媲美GPT-4o!解决扩散模型误差累计问题

任务构建与训练细节

在Nexus-Gen工作之前,没有看到过在统一的理解、生成和编辑任务上做训练的先例。所以魔搭团队首先从工程上,探索使用类messages格式来定义所有任务的数据格式。如下图所示。

开源全能图像模型媲美GPT-4o!解决扩散模型误差累计问题

之后,团队从开源社区收集了约25M训练数据并转化为以上统一的格式,其中,图像理解数据6M,图像生成数据12M,图像编辑数据7M。

部分数据使用Qwen-VL-max API进行了重新标注。其中,图像编辑数据包含了团队在ModelScope社区最新开源的,图像编辑数据集系列ImagePulse。

这一系列数据集中,针对GPT-4o不同的图像编辑能力,包含了添加、去除、改变、风格迁移等原子能力而生成的,大约1M高质量样本。

此外后续团队也会将其他在训练过程中使用到的全部数据,都进行开源。

由于Nexus-Gen将图像特征统一在Vision Encoder的高维空间中,因此自回归模型部分和扩散模型部分可以分开训练。

自回归模型使用魔搭开源的SWIFT框架训练,扩散模型则使用了魔搭的DiffSynth-Studio框架训练。下表详细描述了训练过程的细节。

开源全能图像模型媲美GPT-4o!解决扩散模型误差累计问题

自回归模型采用了三阶段训练策略,前两个阶段逐步将图像生成和图像编辑能力嵌入语言模型中,最后一个阶段则采用少量高质量数据来提升模型生图质量。

扩散模型的训练目标是将输入条件由原本文本输入调整为图像Embedding输入,采用单阶段训练策略。

Nexus-Gen 功能展示

Nexus同时具备图像理解、生成和编辑能力,以下是每个能力的可视化案例。

图像理解

开源全能图像模型媲美GPT-4o!解决扩散模型误差累计问题

图像生成

开源全能图像模型媲美GPT-4o!解决扩散模型误差累计问题

图像编辑

开源全能图像模型媲美GPT-4o!解决扩散模型误差累计问题

未来展望

在模型融合训练、图像Token数量提升、ScaleUp数据集和模型大小等等方面,Nexus-Gen依然存在着大量的优化潜力,目前ModelScope团队在这些不同方向,还在进行更深入的探索。

Nexus-Gen的诞生,验证了从SOTA的MLLMs和扩散模型出发,来对齐以GPT-4o为代表的闭源SOTA的可能性。其效果与GPT-4o具备许多共同点,比如图像编辑会导致原图部分变化、可以文本润色进行多样化图像生成等;团队也发现了许多OpenAI团队没有揭露的现象,比如图像编辑能力极大受益于图像生成,统一模型使多prompt编辑、故事性编辑成为可能等等。

ModelScope社区会持续将探索过程的模型权重、训练数据以及工程框架全部开源,欢迎社区对Nexus-Gen和All-to-All统一模型的技术未来进行广泛交流。

论文链接:https://arxiv.org/pdf/2504.21356
代码链接:https://github.com/modelscope/Nexus-Gen
模型链接:https://www.modelscope.cn/models/DiffSynth-Studio/Nexus-Gen
数据集(ImagePulse)链接:https://www.modelscope.cn/collections/ImagePulse—-tulvmaidong-7c3b8283a43e40

版权所有,未经授权不得以任何形式转载及使用,违者必究。

Read More 

正文完
可以使用微信扫码关注公众号(ID:xzluomor)
post-qrcode
 0
评论(没有评论)

文心AIGC

2025 年 5 月
 1234
567891011
12131415161718
19202122232425
262728293031  
文心AIGC
文心AIGC
人工智能ChatGPT,AIGC指利用人工智能技术来生成内容,其中包括文字、语音、代码、图像、视频、机器人动作等等。被认为是继PGC、UGC之后的新型内容创作方式。AIGC作为元宇宙的新方向,近几年迭代速度呈现指数级爆发,谷歌、Meta、百度等平台型巨头持续布局
文章搜索
热门文章
潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026

潞晨尤洋:日常办公没必要上私有模型,这三类企业才需要 | MEET2026 Jay 2025-12-22 09...
反超Nano Banana!OpenAI旗舰图像生成模型上线

反超Nano Banana!OpenAI旗舰图像生成模型上线

反超Nano Banana!OpenAI旗舰图像生成模型上线 Jay 2025-12-17 10:25:43 ...
“昆山杯”第二十七届清华大学创业大赛决赛举行

“昆山杯”第二十七届清华大学创业大赛决赛举行

“昆山杯”第二十七届清华大学创业大赛决赛举行 一水 2025-12-22 17:04:24 来源:量子位 本届...
人车家全生态持续破圈,小米宣布对开发者开放小米MiMo大模型、CarIoT硬件生态

人车家全生态持续破圈,小米宣布对开发者开放小米MiMo大模型、CarIoT硬件生态

人车家全生态持续破圈,小米宣布对开发者开放小米MiMo大模型、CarIoT硬件生态 量子位的朋友们 2025-...
最新评论
ufabet ufabet มีเกมให้เลือกเล่นมากมาย: เกมเดิมพันหลากหลาย ครบทุกค่ายดัง
tornado crypto mixer tornado crypto mixer Discover the power of privacy with TornadoCash! Learn how this decentralized mixer ensures your transactions remain confidential.
ดูบอลสด ดูบอลสด Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Pretty! This has been a really wonderful post. Many thanks for providing these details.
ดูบอลสด ดูบอลสด Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
Obrazy Sztuka Nowoczesna Obrazy Sztuka Nowoczesna Thank you for this wonderful contribution to the topic. Your ability to explain complex ideas simply is admirable.
ufabet ufabet Hi there to all, for the reason that I am genuinely keen of reading this website’s post to be updated on a regular basis. It carries pleasant stuff.
ufabet ufabet You’re so awesome! I don’t believe I have read a single thing like that before. So great to find someone with some original thoughts on this topic. Really.. thank you for starting this up. This website is something that is needed on the internet, someone with a little originality!
ufabet ufabet Very well presented. Every quote was awesome and thanks for sharing the content. Keep sharing and keep motivating others.
热评文章
反超Nano Banana!OpenAI旗舰图像生成模型上线

反超Nano Banana!OpenAI旗舰图像生成模型上线

反超Nano Banana!OpenAI旗舰图像生成模型上线 Jay 2025-12-17 10:25:43 ...
英伟达护城河又宽了!低调收购开源算力调度王牌工具,全球过半顶级超算在用,Thinking Machines也离不开它

英伟达护城河又宽了!低调收购开源算力调度王牌工具,全球过半顶级超算在用,Thinking Machines也离不开它

英伟达护城河又宽了!低调收购开源算力调度王牌工具,全球过半顶级超算在用,Thinking Machines也离...
英伟达护城河又宽了!低调收购开源算力调度王牌工具,全球过半顶级超算在用,Thinking Machines也离不开它

英伟达护城河又宽了!低调收购开源算力调度王牌工具,全球过半顶级超算在用,Thinking Machines也离不开它

英伟达护城河又宽了!低调收购开源算力调度王牌工具,全球过半顶级超算在用,Thinking Machines也离...
是个公司都在用AI Agent,但大家真的用明白了吗| MEET2026圆桌论坛

是个公司都在用AI Agent,但大家真的用明白了吗| MEET2026圆桌论坛

是个公司都在用AI Agent,但大家真的用明白了吗| MEET2026圆桌论坛 一水 2025-12-17 ...
人车家全生态持续破圈,小米宣布对开发者开放小米MiMo大模型、CarIoT硬件生态

人车家全生态持续破圈,小米宣布对开发者开放小米MiMo大模型、CarIoT硬件生态

人车家全生态持续破圈,小米宣布对开发者开放小米MiMo大模型、CarIoT硬件生态 量子位的朋友们 2025-...